The development of efficient and sustainable armor systems is crucial for protecting bodies and vehicles. In this study, epoxy composites reinforced with natural lignocellulosic fibers (NLFs) from carnauba () were produced with 0, 10, 20, 30, and 40% fiber volume fractions. Their ballistic performance was evaluated by measuring residual velocity and absorbed energy after impact with 7.62 mm ammunition, as well as their application in a multilayer armor system (MAS). Scanning electron microscopy (SEM) was used to analyze fracture regions, and explicit dynamic simulations were performed for comparison with experimental tests. Residual velocity tests indicated a limit velocity (V) between 213 and 233 m/s and absorbed energy (E) between 221 and 264 J, surpassing values reported for aramid fabric. All formulations showed indentation depths below the National Institute of Justice (NIJ) limit, with the 40% fiber sample achieving the lowest depth (31.2 mm). The simulation results correlated well with the experimental data, providing insight into deformation mechanisms during a level III ballistic event. These findings demonstrate the high potential of carnauba fibers in epoxy-based polymer composites, particularly as an intermediate layer in MAS, offering a sustainable alternative for ballistic protection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11859126PMC
http://dx.doi.org/10.3390/polym17040534DOI Listing

Publication Analysis

Top Keywords

epoxy composites
8
composites reinforced
8
carnauba fibers
8
armor system
8
40% fiber
8
residual velocity
8
absorbed energy
8
computational experimental
4
ballistic
4
experimental ballistic
4

Similar Publications

Dynamic reactive synthesis of bio-based compatibilizer via diepoxide monomers grafting polylactic acid and reactive compatibilization of incompatible polylactic acid/bamboo powder composites.

Int J Biol Macromol

March 2025

School of Chemistry and Chemical Engineering Hainan University, Haikou 570228, Hainan Province, China; Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang Province, China. Electronic address:

The synthesis of monomers with two epoxy structures (EIA) was successfully achieved by adopting holo-biobased feedstocks and in situ solvolysis reaction. The molecular structure of EIA was subjected to characterization through the use of infrared spectroscopy (IR), mass spectrometry (MS), and nuclear magnetic resonance hydrogen spectroscopy (H NMR). The EIA was employed as the epoxy monomers for the synthesis of the grafted compatibilizer, resulting in the successful preparation of a fully bio-based and high epoxy value grafted compatibilizer (PLA-g-EIA (PLE)).

View Article and Find Full Text PDF

Comparative Analysis of CAD-CAM Workflow Variations on the Marginal and Internal Gaps and Fatigue Behavior of Ceramic and Resin Composite Dental Crowns.

Eur J Dent

March 2025

Post-Graduate Program in Oral Sciences (Prosthodontics Units), Faculty of Dentistry, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil.

Objectives:  To analyze the marginal/internal gap and the fatigue behavior of crowns made of two different materials, using four combinations of a digital workflow-two intraoral scanners (IOSs) and two milling machines.

Materials And Methods:  Crowns were made considering three factors: IOS (a confocal microscopy-based scanner: TRIOS 3-TR; or a combination of active triangulation and dynamic confocal microscopy: Primescan-PS), milling machines (four-axis: CEREC MC XL-CR or five-axis: PrograMill PM7-PM), and restorative material (lithium disilicate-LD or resin composite-RC) ( = 10). The bonding surface of each crown was treated and bonded to each respective glass fiber-reinforced epoxy resin die using a dual-cure resin cement.

View Article and Find Full Text PDF

Objectives:  This article evaluates the marginal and internal gap, interfacial volume, and fatigue behavior in computer-aided design-computer-aided manufacturing (CAD-CAM) restorations with different designs (crowns or endocrowns) made from lithium disilicate-based ceramic (LD, IPS e.max CAD, Ivoclar AG) or resin composite (RC, Tetric CAD, Ivoclar AG).

Materials And Methods:  Simplified LD and RC crowns (-C) and endocrowns (-E) were produced ( = 10) using CAD-CAM technology, through scanning (CEREC Primescan, Dentsply Sirona) and milling (CEREC MC XL, Dentsply Sirona), and then adhesively bonded to fiberglass-reinforced epoxy resin.

View Article and Find Full Text PDF

To significantly improve the tribological performance of epoxy resin (EP), a novel h-BN/MoS composite was successfully synthesized using spherical MoS particles with lamellar self-assembly generated through the calcination method, followed by utilizing the "bridging effect" of a silane coupling agent to achieve a uniform and vertically oriented decoration of hexagonal boron nitride (h-BN) nanosheets on the MoS surface. The chemical composition and microstructure of the h-BN/MoS composite were systematically investigated. Furthermore, the enhancement effect of composites with various contents on the frictional properties of epoxy coatings was studied, and the mechanism was elucidated.

View Article and Find Full Text PDF

Abrasion Effect on Heating Performance of Carbon Nanotube/Epoxy Composites.

Nanomaterials (Basel)

February 2025

Department of Civil Engineering and Engineering Mechanics, Columbia University, 500 W 120th Street, New York, NY 10027, USA.

The effects of abrasion on the heating performance of carbon nanotube (CNT)/epoxy composites were investigated in terms of Joule's heat, convective heat, and radiative heat under moderate-to-severe and localized abrasive conditions. While the overall heating behavior was characterized by the heating rate and the curvature of the transient response, a numerical solution of the heat equation was used to quantify convective and radiative heat transfers, incorporating the specific heat of each component, the convective heat transfer coefficient, and the Biot number. CNT reinforcement significantly improved wear resistance at a CNT concentration of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!