Hard, flexible, transparent, and hydrophobic multifunctional coatings have a wide range of applications, but they do not adequately protect against harsh conditions, especially photoaging. In this study, SiO and AlO nanoparticles were first modified by silazane and epoxy-functionalized silanes and then reacted with a polyetheramine curing agent to prepare highly crosslinked multifunctional hybrid coatings at room temperature. Due to the integration of siloxane nanoparticles and a polymer network, the multifunctional coatings presented outstanding hardness (4H), flexibility (bending diameter of 10 mm), and transmittance (>97%). The introduction of low-surface-energy PDMS and methyl-rich HMDS endowed the coatings with good hydrophobicity (water contact angle = 141.37°). The high reflectivity of SiO and AlO in the solar spectral region can help prevent photoaging of the coatings, improve their heat-shielding effect, and broaden their application scenarios. Compared with the traditional manufacturing methods, this study did not need ultraviolet irradiation, and the multifunctional transparent coatings could be prepared through a simple and efficient step-by-step strategy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11859555 | PMC |
http://dx.doi.org/10.3390/polym17040519 | DOI Listing |
Adv Mater
March 2025
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, Department of Chemistry and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China.
The rise of wearable electronics demands flexible energy storage solutions like flexible fiber energy storage devices (FESDs), known for their flexibility and portability. However, it remains difficult for existing fabrication methods (typically, finite-coating, thermal-drawing, and solution-extrusion) to simultaneously achieve desirable electrochemical performances and fast production of FESDs. Here, a new scalable coating-extrusion method is developed, utilizing a novel extruded spinneret with tapered apertures to create dual pressure zones.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary.
Sn-doped TiO-carbon composites were identified as promising multifunctional supports for Pt electrocatalysts, in which the oxide component enhances resistance against corrosion and strong metal-support interactions at the Pt-oxide boundary ensure high stability for the Pt nanoparticles. This work is devoted to the study of the influence of preliminary functionalization of the carbon on the properties of Pt/TiSnO-C catalysts. The structural, compositional and morphological differences between the samples prepared using functionalized or unmodified carbon, as well as the effect of carbon pre-modification on the electrocatalytic behavior of the synthesized Pt catalysts, were investigated using TEM, XRD, XPS, nitrogen adsorption and electrochemical measurements.
View Article and Find Full Text PDFInt J Biol Macromol
March 2025
School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China.
In this paper, the dispersion stability of graphene was effectively promoted by the introduction of hydroxypropyl cellulose (HPC), a novel composite hydrogel PAM-LMA-PDA@TiO-GN was prepared. Polyacrylamide (PAM) provided the basic three-dimensional network structure, lauryl methacrylate (LMA), as the hydrophobic monomer, constructed the hydrophobic associative micro-regions inside the hydrogel, which enhanced the structural stability, and polydopamine-coated TiO (PDA@TiO), as a nano-toughness enhancement point, which endowed the hydrogel with a stress and strain of 1026 kPa and 2519 %, respectively. Hydrogels loaded with Ag nanowires (Ag NWs) and graphene (GN) were prepared using Ag nanowires as the intercalating agent, graphene as the substrate and hydrogel as the carrier, graphene and Ag nanowires endow the hydrogels with excellent electron transport capabilities.
View Article and Find Full Text PDFACS Biomater Sci Eng
March 2025
Department of Pediatric Dentistry (Department of Preventive Dentistry), School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, No.44-1 Wenhua Road West, Jinan, Shandong 250012, China.
Magnesium alloys are often used in bone repair surgeries due to their biodegradability and excellent elastic modulus, making them a promising alternative to traditional nondegradable implants like titanium alloys. However, their rapid degradation rate limits their use as implants in the body. To enhance the corrosion resistance and bioactivity of magnesium alloys, we applied an ultrasonic spray coating on microarc oxidized (MAO) AZ31 magnesium alloy, using a mixture of silk fibroin (SF) and nanohydroxyapatite (nHAp).
View Article and Find Full Text PDFACS Omega
March 2025
Department of Dyes and Chemical Engineering, Bangladesh University of Textiles (BUTEX), Dhaka 1208, Bangladesh.
Smart fabrics with multifunctional properties, such as antimicrobial reduction, superhydrophobicity, and UV resistance, have been highly desirable in medical textiles and sportswear. In this study, we demonstrate a cost-effective approach to achieving these properties. A nanosolution of silver and titanium dioxide was prepared, and a dip coating method was used to coat the polyester-cotton blend and 20% recycled cotton fabric.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!