Bio-based polyurethane (BPU) offers excellent biocompatibility and outstanding elasticity, providing vast potential for the development of next-generation waterproof and breathable materials. However, achieving stable and uniform electrospinning of BPU remains a significant challenge. Herein, BPU with superior electrospinning performance was synthesized using poly(butylene sebacate), poly(trimethylene ether glycol), ethylene glycol, and methylene diphenyl diisocyanate (MDI) as raw materials. BPU nanofibrous membranes were successfully fabricated using solutions of varying concentrations (12 wt%, 16 wt%, 20 wt%, and 24 wt%), and their morphology, mechanical properties, hydrophobicity, and breathability were systematically analyzed. The nanofibrous membrane prepared with 20 wt% BPU solution exhibited optimal fiber morphology and mechanical properties, with a tensile strength of 15.6 MPa and an elongation at break of 440.8%. In contrast, lower concentrations (12 wt% and 16 wt%) resulted in insufficient fiber formation, leading to poorer performance, while higher concentrations (24 wt%) significantly reduced fiber uniformity, negatively impacting the overall performance. Additionally, the nanofibrous membrane produced from the 20 wt% BPU solution demonstrated significant hydrophobicity and breathability, with a water contact angle of 133.2°, hydrostatic pressure of 48.2 kPa, and breathability of 12.6 kg·m·d. These findings suggest that BPU nanofibrous membranes produced via electrospinning hold great potential for application in functional textiles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11859813PMC
http://dx.doi.org/10.3390/polym17040486DOI Listing

Publication Analysis

Top Keywords

wt% wt%
16
nanofibrous membrane
12
concentrations wt%
12
wt%
9
bio-based polyurethane
8
waterproof breathable
8
bpu nanofibrous
8
nanofibrous membranes
8
morphology mechanical
8
mechanical properties
8

Similar Publications

Nanofibrous Hydrogel with Highly Salt-Resistant Radial/Vertical-Combined Structure for Efficient Solar Interfacial Evaporation.

Small

March 2025

College of Textile and Clothing Engineering, National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215021, P. R. China.

Hydrogel-based solar interfacial evaporators, featuring various channels such as random, unidirectional, and radial array, are considered effective for seawater desalination owing to their porous structure, lower evaporation enthalpy, and controllable water transport capacity. However, each individual array structure has its own strengths and limitations, influencing water transportation, thermal management, and salt rejection. By combining the benefits of each array configuration into a single evaporator, the evaporation performance can be maximized.

View Article and Find Full Text PDF

Recent research has revealed a close association between obesity and various metabolic disorders, including renal metabolic diseases, but the mechanism is still unknown. This study explored the role of p16INK4a in obesity-related kidney fibrosis and evaluated its potential as a therapeutic target. Using wild-type (WT) mice and p16 KO mice, we fed both groups a high-fat diet (HFD) for 6 months.

View Article and Find Full Text PDF

Background: () is a widely prevalent intracellular parasite that infects almost all warm-blooded animals and causes serious public health problems. The drugs currently used to treat toxoplasmosis have the disadvantage of being toxic and prone to the development of resistance, and the only licensed vaccine entails a risk of virulence restoration. The development of a safe and effective vaccine against is urgently needed.

View Article and Find Full Text PDF

Rapid generation and characterization of recombinant HCoV-OC43-VR1558 infectious clones expressing reporter Renilla luciferase.

Biosaf Health

December 2024

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.

Viral infectious clones (ICs) serve as robust platforms for studying viral biology and screening antiviral agents using reverse genetics. However, the molecular profiles and complex limitations of human coronaviruses (HCoVs) pose a challenge to ICs development. In this study, we report a novel platform to develop the ICs for HCoV-OC43-VR1558 using a one-step assembly method in yeast by transformation-associated recombination (TAR) technology.

View Article and Find Full Text PDF

To address the critical corrosion challenges faced by metal pipelines in carbon capture, utilization, and storage (CCUS) technologies, the study prepared a series of novel Fe-5Cr-(0-3)Al alloy steels. The corrosion resistance of these alloys in a water-saturated supercritical CO (sc-CO) environment was systematically investigated. The results revealed that increasing Al content significantly reduced the corrosion rate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!