Melatonin (MLT), produced by the pineal gland and other tissues, is known for its anti-inflammatory effects, particularly in regulating inflammatory markers and cytokines in intestinal cells. Our study aimed to investigate how MLT influences the expression of inflammatory genes through histone modification in canine ileum epithelial cells (cIECs). In our experiment, cIECs were cultured and divided into a control group (CON) and an MLT-treatment group. MLT did not significantly affect cell growth or death in cIECs compared to the CON. However, MLT treatment led to an upregulation of CD40, ZAP70, and IL7R and a downregulation of LCK, RPL37, TNFRSF13B, CD4, CD40LG, BLNK, and CIITA at the mRNA expression level. Moreover, MLT significantly altered the NF-kappa B signaling pathway by upregulating genes, such as CD40, ZAP70, TICAM1, VCAMI, GADD45B, IRAK1, TRADD, RELA, RIPK1, and RELB, and downregulating PRKCB, LY96, CD40LG, ILIB, BLNK, and TNFRSF11A. Using ChIP-qPCR, we discovered that MLT treatment enhanced histone acetylation marks H3K9ac, H3K18ac, H3K27ac, and methylation marks H3K4me1 and H3K4me3 at the ZAP70 and CD40 gene loci ( < 0.05). Additionally, the enrichment of RNA polymerase II and phosphorylated Ser5 pol-II at these loci was increased in MLT-treated cells ( < 0.05), indicating heightened transcriptional activity. In conclusion, our findings suggest that MLT mitigates inflammation in cIECs by modulating the transcription of ZAP70 and CD40 through histone modifications, offering potential therapeutic insights for inflammatory bowel diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11860356PMC
http://dx.doi.org/10.3390/vetsci12020087DOI Listing

Publication Analysis

Top Keywords

zap70 cd40
12
histone modifications
8
canine ileum
8
ileum epithelial
8
epithelial cells
8
mlt treatment
8
cd40 zap70
8
mlt
7
zap70
5
cd40
5

Similar Publications

Melatonin (MLT), produced by the pineal gland and other tissues, is known for its anti-inflammatory effects, particularly in regulating inflammatory markers and cytokines in intestinal cells. Our study aimed to investigate how MLT influences the expression of inflammatory genes through histone modification in canine ileum epithelial cells (cIECs). In our experiment, cIECs were cultured and divided into a control group (CON) and an MLT-treatment group.

View Article and Find Full Text PDF

Recent research has highlighted the therapeutic potential of citrus-derived dietary 5,6,7,4'-tetramethoxyflavone (TMF) against HeLa cancer. Our study aims to elucidate its mechanisms of action through proteomics analysis, network pharmacology, and molecular docking. The results suggested that TMF demonstrated efficacy by upregulating CD40, CD40L, Fas, Fas-L, HSP27, HSP60, IGFBP-1, IGFBP-2, IGF-1sR, Livin, p21, p27, sTNFR2, TRAILR2, TRAILAR3, TRAILR4, XIAP, p-Sre, p-Stat1, p-Stat2 p-c-Fos, p-SMAD1, p-SMAD2, p-SMAD4, p-SMAD5, p-IκBα, p-MSK1, p-NFκB, p-TAK1, p-TBK1, p-ZAP70, and p-MSK2, while downregulating p-EGFR, p-ATF2, p-cJUN, p-HSP27, p-JNK, and p-GSK3A.

View Article and Find Full Text PDF

Investigation of T cell-related hub genes in diabetic nephropathy by bioinformatics analysis and experiment validation.

Mol Immunol

February 2024

Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, Yinchuan, China; The Third Clinical Medical College, Ningxia Medical University, Yinchuan, China. Electronic address:

Article Synopsis
  • * Researchers analyzed kidney samples from diabetic mice to discover genes related to oxidative stress and inflammation that are differentially expressed, identifying 122 significant genes linked to these processes.
  • * The study highlighted key genes associated with T cell immune response in DN, offering insights into the underlying mechanisms of immunological damage and suggesting new avenues for treatment and understanding of the disease.
View Article and Find Full Text PDF

An IgD-Fc-Ig fusion protein restrains the activation of T and B cells by inhibiting IgD-IgDR-Lck signaling in rheumatoid arthritis.

Acta Pharmacol Sin

February 2022

Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China.

Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by synovitis and the destruction of small joints. Emerging evidence shows that immunoglobulin D (IgD) stimulation induces T-cell activation, which may contribute to diseases pathogenesis in RA. In this study, we investigated the downstream signaling pathways by which IgD activated T cells as well as the possible role of IgD in the T-B interaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!