This study delves into the therapeutic potential of Qi Ling Gui Fu Prescription (QLGFP) in broiler ascites syndrome (AS) by investigating its impact on the phenotypic transformation of vascular smooth muscle. Utilizing network pharmacology, we identified 267 active ingredients and 120 core targets of QLGFP, revealing its multifaceted mechanism of action. Gene enrichment analysis highlighted the pivotal roles of Toll-like receptor, FoxO, and MAPK signaling pathways in QLGFP's therapeutic effects. Experimental validation in a broiler AS model demonstrated that QLGFP regulated the expression of key markers (SM-22α, OPN, and KLF4) associated with the phenotypic transformation of pulmonary artery vascular smooth muscle (PASMC). Clinical improvements were evident, with a significant reduction in ascites cardiac index (AHI). Furthermore, QLGFP suppressed the protein expression of MAPK1 (ERK1), p-MAPK1, MAPK9 (JNK2), p-MAPK9, MA3.PK14 (P38α), and p-MAPK14, along with downstream factors AP1 and ATF4. These findings suggest that QLGFP effectively prevents and treats AS in broilers by modulating the MAPKs-AP1/ATF4 pathway, thereby inhibiting the phenotypic transformation and proliferation of PASMCs. This study contributes a theoretical foundation for understanding the role of QLGFP in the prevention and treatment of AS in broilers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11860255PMC
http://dx.doi.org/10.3390/vetsci12020078DOI Listing

Publication Analysis

Top Keywords

phenotypic transformation
12
ling gui
8
gui prescription
8
broiler ascites
8
ascites syndrome
8
network pharmacology
8
vascular smooth
8
smooth muscle
8
qlgfp
6
mechanistic insights
4

Similar Publications

Navigating nitrogen sustainability with microbiome-associated phenotypes.

Trends Plant Sci

March 2025

Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Center for Advanced Bioenergy and Bioproduct Innovation, Department of Energy, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL, USA. Electronic address:

Crop microbiomes promote plant health through various mechanisms, including nutrient provisioning. However, agriculture neglected the importance of these microbiome-associated phenotypes (MAPs) in conventional management approaches originating from the Green Revolution. Green Revolution innovations, such as nitrogen fertilizers and high-yielding germplasm, supported an increase in global crop yields.

View Article and Find Full Text PDF

Pigeonpea is an important legume valued for its high nutritional, agricultural, and economic significance in the Asian subcontinent. Despite its potential for high yield, productivity remains stagnant due to several abiotic and biotic stresses. To mitigate these challenges, biotechnological interventions like genome editing offer promising solutions.

View Article and Find Full Text PDF

Background: Venous thromboembolism (VTE), including pulmonary embolism (PE) and deep vein thrombosis (DVT), is the third most common cardiovascular disease. A low amount of mitochondrial DNA copy number (mtDNA-CN) reflects mitochondrial dysfunctions and has been associations with arterial cardiovascular diseases. However, the role of mtDNA-CN in venous cardiovascular disease was unclear.

View Article and Find Full Text PDF

The development of antibiotic resistance and inadequate immune response in chronic inflammation pose significant challenges in treating chronic osteomyelitis. As accepted non-antibiotic antimicrobial therapies, sonodynamic therapy (SDT) and photothermal therapy (PTT) are recognized for their effectiveness in eliminating bacteria and promoting tissue repair, rendering them promising therapeutic strategies for treating bacterial infections and preventing the emergence of drug-resistant bacteria. However, the antimicrobial action and efficacy in promoting tissue repair depend on the activation status of the host immune system.

View Article and Find Full Text PDF

HD561, which was designed to enhance nerve growth, was re-engineered into HD56, a carboxylic acid ester prodrug. The goal of this study was to compare the druggability, species differences, and the correlation between in vitro and in vivo transformation of HD56 to HD561 from a pharmacokinetic (PK) perspective, offering a scientific basis for HD56's clinical research. The bidirectional transmembrane transport of HD56 and HD561 was investigated using Caco-2 cells and LLC-PK1 cells overexpressing MDR1 monolayer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!