Encephalitic alphaviruses, including eastern, Venezuelan, and western equine encephalitis virus (EEEV, VEEV, and WEEV, respectively) are New World alphaviruses primarily transmitted by mosquitos that cause debilitating and lethal central nervous system (CNS) disease in both humans and horses. Despite over one hundred years of research on these viruses, the underpinnings of the molecular mechanisms driving virally induced damage to the CNS remain unresolved. Moreover, virally induced encephalitis following exposure to these viruses causes catastrophic damage to the CNS, and survivors of infection often suffer from permanent neurological sequelae as a result of sustained neuroinflammation and neurological insults encountered. Animal models are undoubtedly invaluable tools in biomedical research, where physiologically relevant models are required to study pathogenesis and host-pathogen interactions. Here, we review the literature to examine nonhuman primate (NHP) and mouse models of infection for EEEV, VEEV, and WEEV. We provide a brief overview of relevant background information for each virus, including geography, epidemiology, and clinical disease. The primary focus of this review is to describe neuropathological features associated with CNS disease in NHP and mouse models of infection and compare CNS invasion and neuropathogenesis for aerosol, intranasal, and subcutaneous routes of exposure to EEEV, VEEV, and WEEV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858634 | PMC |
http://dx.doi.org/10.3390/pathogens14020193 | DOI Listing |
Cancer Discov
March 2025
University of California, San Francisco, San Francisco, CA, United States.
Historical studies performed nearly a century ago using mouse skin models identified two key steps in cancer evolution: initiation, a likely mutational event, and promotion, driven by inflammation and cell proliferation. Initiation was proposed to be permanent, with promotion as the critical rate-limiting step for cancer development. Here, we carried out whole genome sequencing to demonstrate that initiated cells with thousands of mutagen-induced mutations can persist for long periods and are not removed by cell competition or by immune intervention, thus mimicking the persistence of cells with cancer driver mutations in normal human tissues.
View Article and Find Full Text PDFJ Med Chem
March 2025
State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine; Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
The anticancer agent irinotecan often induces severe delayed-onset diarrhea, inhibiting human carboxylesterase 2A (hCES2A) can significantly alleviate irinotecan-triggered gut toxicity (ITGT). This work presents an efficient workflow for design and developing novel efficacious hCES2A inhibitors. A well-training machine learning model identified as a lead compound, while compound was developed as a novel time-dependent hCES2A inhibitor (IC = 0.
View Article and Find Full Text PDFJ Am Chem Soc
March 2025
Department of Pharmacology and Chemical Biology, Institute of Molecular Medicine, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
Raman-based theranostics has demonstrated great potential for sensitive real-time imaging and treatment. However, these advanced materials, primarily depending on the SERS technique, encounter clinical concerns regarding substrate biosafety. Herein, we molecularly engineered a substrate-free SICTERS small molecule, namely BTT-TPA (bis-thienyl-substituted benzotriazole selenadiazole derivative structures), possessing both ultrasensitive Raman signals and excellent photothermal effects based on self-stacking.
View Article and Find Full Text PDFJ Immunol
January 2025
Department of Biological Sciences, California State University San Marcos, San Marcos, CA, United States.
Obesity is associated with comorbidities including type 2 diabetes, chronic nonhealing wounds, and psoriasis. Normally, skin homeostasis and repair is regulated through the production of cytokines and growth factors derived from skin-resident cells including epidermal γδ T cells. However, epidermal γδ T cells exhibit reduced proliferation and defective growth factor and cytokine production during obesity and type 2 diabetes.
View Article and Find Full Text PDFJ Immunol
January 2025
Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei City, Taiwan.
Decoy receptor 3 (DcR3), a soluble receptor in the tumor necrosis factor receptor superfamily, regulates the functions of monocytes, macrophages, dendritic cells, and T cells. Previous studies have demonstrated that DcR3 suppresses B cell proliferation in vitro and ameliorates autoimmune diseases in animal models; however, whether and how DcR3 regulates antibody production is unclear. Using a DcR3 transgenic mouse model, we found that DcR3 impaired the T cell-dependent antigen-stimulated antibody response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!