The clinical use of spinal manipulation to treat musculoskeletal conditions has nearly tripled in the United States since 1980, and it is currently recommended by most global clinical guidelines as a conservative treatment for musculoskeletal pain, despite a lack of knowledge concerning its mechanisms of action. This overview highlights evidence of direct neuromuscular responses to high-velocity, low-amplitude spinal manipulation (HVLA-SM) as delivered by chiropractic, osteopathic, and physical therapy clinicians, with an intent to foster greater interprofessional dialogue and collaborative research to better address current gaps in mechanistic knowledge of the neuromuscular response to HVLA-SM. Three databases (PubMed, CINAHL Ultimate (EBSCO), EMBASE (Elsevier)) were searched from 2000 to December 2024 with specific search terms related to thrust HVLA-SM and the neuromuscular response. To focus strictly on neuromuscular responses related to HVLA-SM, this literature overview excluded articles using non-HVLA-SM manual therapy techniques (i.e., massage, non-thrust joint mobilization, and/or combined HVLA-SM with other forms of treatment such as exercise or non-thrust joint mobilization) and studies in which patient-centered outcomes (i.e., pain scores) were the primary outcomes of the HVLA-SM interventions. Pediatric studies, animal studies, and studies in languages other than English were also excluded. One-hundred and thirty six articles were identified and included in this overview. Neuromuscular findings related to HVLA-SM in the areas of electromyography (EMG), muscle thickness, muscle strength, reflexes, electroencephalogram (EEG), and evoked potential were often mixed; however, evidence is beginning to accumulate either in favor of or opposed to particular neuromuscular responses to HVLA-SM as larger and more scientifically rigorous studies are being performed. Recurrent limitations of many HVLA-SM-related studies are small sample sizes, leading to a lack of generalizability, and the non-standardization of HVLA-SM delivery, which has prevented researchers from arriving at definitive conclusions regarding neuromuscular responses to HVLA-SM. Discussions of future neuromuscular research needs related to HVLA-SM are included for clinicians and researchers inside and outside of the field of manual therapy, to advance this field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857552 | PMC |
http://dx.doi.org/10.3390/medicina61020187 | DOI Listing |
PLoS One
March 2025
Center for Rehabilitation Research, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America.
This study investigated the effects of mental fatigue on rate of force development (RFD) and peak force during an isometric mid-thigh pull (IMTP), as well as its impact on muscle activation measured by electromyography (EMG) median frequency. Sixteen healthy, resistance-trained males completed two sessions: a control condition and a mentally fatigued state induced by a 30-minute modified Stroop task. IMTP performance and muscle activation were assessed before and after the mental fatigue task.
View Article and Find Full Text PDFJ Infus Nurs
March 2025
Author Affiliations: Takeda Development Center Americas, Inc., Cambridge, Massachusetts (Kim Duff); IQVIA Clinical Research Organization, Milan, Italy (Arianna Soresini); IQVIA Clinical Research Organization, Cambridge, Massachusetts (Nancy Wolf* and Alane Fairchild); IQVIA Clinical Research Organization, Ankara, Turkey (Şükran Altan**); IQVIA Clinical Research Organization, Mexico City, Mexico (Wendy Bencomo); University Clinical Center of Serbia, Belgrade, Serbia (Ivana Ivankovic); University Health Network, University of Toronto, Toronto, Ontario, Canada (Evelyn Sarpong); IQVIA Clinical Research Organization, Warsaw, Poland (Anna Kuczkowska).
Hyaluronidase-facilitated subcutaneous immunoglobulin (fSCIG) 10% offers potential improvements in patient independence and tolerability versus intravenous immunoglobulin (IVIG) when used for the treatment of chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). fSCIG 10% also requires less frequent infusions and fewer infusion sites than conventional subcutaneous immunoglobulin (subcutaneous immunoglobulin without hyaluronidase). The ADVANCE-CIDP 1 study demonstrated fSCIG 10% efficacy and safety in preventing CIDP relapse and positive responses from patients in terms of satisfaction and treatment preference.
View Article and Find Full Text PDFJ R Soc Interface
March 2025
Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
Changes in the mechanical properties of the extracellular matrix (ECM) are a hallmark of disease. Due to its relevance, several models have been developed for the ECM, including cell-derived matrices (CDMs). CDMs are decellularized natural ECMs assembled by cells that closely mimic the stromal fibre organization and molecular content.
View Article and Find Full Text PDFJ Neuroeng Rehabil
March 2025
Neuromuscular Diagnostics, School of Medicine and Health, Technical University of Munich, Munich, Germany.
Background: Grasping and manipulating objects requires humans to adapt both grip and manipulation forces. When handling an object with both hands, the additional degrees of freedom introduce more levels to the redundancy of the object manipulation since we can distribute the contribution of the grip and manipulation forces between hands.
Methods: In this study, we investigated the forces produced by both hands during coupled bimanual manipulation of a needle object in a virtual environment.
Eur J Neurosci
March 2025
Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA.
Motor axon regeneration after traumatic nerve injuries is a slow process that adversely influences patient outcomes because muscle reinnervation delays result in irreversible muscle atrophy and suboptimal axon regeneration. This advocates for investigating methods to accelerate motor axon growth. Electrical nerve stimulation and exercise both enhance motor axon regeneration in rodents and patients, but these interventions cannot always be easily implemented.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!