The course and kinetics of the reactions of sulfur mustard, nitrogen mustard and their selected analogues with sodium ethoxide were studied using a gas chromatograph coupled with a mass spectrometer. 2-chloroethyl ethyl sulfide (CEES), a monofunctional analogue of sulfur mustard (HD), bis(2-chloroethyl) ether (BCEE), an oxygen analogue of sulfur mustard, and bis(2-chloroethyl)amine, an analogue of nitrogen mustard HN-3, in which one hydrogen atom remains unsubstituted with a chloroethyl group, were used as imitators of mustards. For the study, the last mentioned compound was given the acronym HN-0. The research included checking how the form of sodium ethoxide influences the reaction rate. Two solutions were used: sodium ethoxide solution obtained by dissolving a commercially available compound in crystalline form and ethoxide solution obtained by dissolving sodium in ethanol. Additionally, the extent to which diethylenetriamine (DETA) accelerates the reactions of the studied compounds with sodium ethoxide was checked. The decontamination reactions were carried out in an anhydrous environment at a constant temperature of 25.0 °C. The rate of the mustard decontamination reaction increased significantly in systems containing DETA. Therefore, this amine can be used as a catalyst for this reaction. DETA has the most significant effect on the rate of the reaction of sodium ethoxide with CEES. The effect of the EtONa form was tested in the decontamination reaction of HD, revealing that both forms are equally effective, with only minor differences in reaction rates. Freshly synthesised sodium ethoxide reacts with HD 1.24 times faster. The study also assessed whether selected non-CWA compounds can be successfully used in studies as mustard imitators. Nitrogen mustard and bis(2-chloroethyl)amine reactions proceed according to the same mechanism-nucleophilic substitution. Bis(2-chloroethyl)amine reacts slightly faster than HN-3, both in solution with and without the addition of a catalyst. Sulfur mustard (HD) and CEES with sodium ethoxide and DETA undergo an elimination reaction, while BCEE undergoes a substitution reaction, which proceeds much slower. The observed differences disqualify BCEE as a sulfur mustard imitator. HD and CEES react with sodium ethoxide and DETA so quickly that the exact kinetic parameters under the developed experimental conditions could not be determined.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858356 | PMC |
http://dx.doi.org/10.3390/molecules30040780 | DOI Listing |
Molecules
February 2025
Institute of Chemistry, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland.
The course and kinetics of the reactions of sulfur mustard, nitrogen mustard and their selected analogues with sodium ethoxide were studied using a gas chromatograph coupled with a mass spectrometer. 2-chloroethyl ethyl sulfide (CEES), a monofunctional analogue of sulfur mustard (HD), bis(2-chloroethyl) ether (BCEE), an oxygen analogue of sulfur mustard, and bis(2-chloroethyl)amine, an analogue of nitrogen mustard HN-3, in which one hydrogen atom remains unsubstituted with a chloroethyl group, were used as imitators of mustards. For the study, the last mentioned compound was given the acronym HN-0.
View Article and Find Full Text PDFLangmuir
January 2025
Jiangxi Key Laboratory of Advanced Ceramic Materials, Jingdezhen 333000, China.
High-temperature and long-term sintering of β″-AlO solid electrolyte (Beta″ Alumina Solid Electrolyte, BASE) can easily cause NaO volatilization. It reduces the solid electrolyte (SE) quality, resulting in low ion conductivity of the electrolyte. It is also difficult to form uniform ionic channels.
View Article and Find Full Text PDFHeliyon
November 2024
Drug Design Laboratory, School of Pharmaceutical Sciences, IFTM University, 244102, Moradabad, India.
ChemSusChem
September 2024
School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510640, China.
Converting lignin into aromatic chemicals is a promising strategy for the high-value utilization of lignocellulosic feedstock. However, the inherent heterogeneity of lignin poses a significant obstacle to achieving efficient conversion and optimal product yields within bio-refinery systems. Herein, we employed a one-step fractionation method to enhance lignin homogeneity and utilized the THF/DMSO-EtONa (tetrahydrofuran/dimethyl sulfoxide-sodium ethoxide) system to depolymerize the fractionated lignin.
View Article and Find Full Text PDFChem Biodivers
July 2024
Metabolic Biology & Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!