: Long-term spaceflight in a microgravity environment frequently results in gastrointestinal dysfunction, presenting substantial challenges to astronauts' health. , a plant recognized for its dual use as food and medicine, contains a key functional component called polysaccharide (HEP), which is purported to promote gastrointestinal health. This study aims to investigate the protective effects of HEP against gastrointestinal disturbances induced by simulated weightlessness and to elucidate its regulatory mechanisms. : Sprague Dawley rats subjected to a tail suspension model were administered either a standard diet or a diet supplemented with 0.125% HEP over a period of 4 weeks (the intake of HEP is approximately 157.5 mg/kg bw/d, n = 8), metagenomics and targeted metabolomics to investigate the effects of HEP on gastrointestinal hormone secretion disorders, gut microbiota dysbiosis, and intestinal barrier damage induced by simulated weightlessness. : Dietary supplementation with HEP was observed to significantly alleviate weightlessness-induced gastrointestinal hormone disruptions, enhancing motility and intestinal barrier function while reducing inflammation. In addition, HEP improved gut microbiota by boosting beneficial bacteria as , , and , while reducing harmful bacteria like and at the species level. Furthermore, HEP altered the serum metabolic profile of the rats, reducing inflammation by upregulating the tryptophan metabolism pathway and enhancing the production of short-chain fatty acids. : HEP effectively protects against gastrointestinal dysfunction induced by simulated weightlessness by regulating hormone secretion and maintaining intestinal homeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858084PMC
http://dx.doi.org/10.3390/nu17040724DOI Listing

Publication Analysis

Top Keywords

induced simulated
12
simulated weightlessness
12
hep
9
tail suspension
8
gastrointestinal dysfunction
8
effects hep
8
hep gastrointestinal
8
gastrointestinal hormone
8
hormone secretion
8
gut microbiota
8

Similar Publications

Role of Electron Correlation beyond the Active Space in Achieving Quantitative Predictions of Spin-Phonon Relaxation.

J Chem Theory Comput

March 2025

Department of Chemistry, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States.

Single-molecule magnets (SMMs) are promising candidates for molecular-scale data storage and processing due to their strong magnetic anisotropy and long spin relaxation times. However, as the temperature rises, interactions between electronic states and lattice vibrations accelerate spin relaxation, significantly limiting their practical applications. Recently, ab initio simulations have made it possible to advance our understanding of phonon-induced magnetic relaxation, but significant deviations from the experiments have often been observed.

View Article and Find Full Text PDF

Vincristine (VCR) is a commonly used clinical anti-cancer drug, but it can also induce neurotoxicity and cause vincristine-induced neuropathic pain (VINP). The metabotropic glutamate receptor 5 (mGluR5) within spinal dorsal horn neurons regulates the transmission of pain mediated by glutamate. In this study, we investigated for the first time the role of mGluR5 in the transmission of noxious information in VINP.

View Article and Find Full Text PDF

Investigation and analysis of the proton-induced reactions on Cu, Cu, and Cu to produce Zn radioisotopes for medical applications.

Appl Radiat Isot

March 2025

Ministry of Education, Directorate of Education, Al-Rasafa Al-Uola, Baghdad, Iraq.

The phenomenological and microscopic level density models were utilized within the TALYS 2.0 software to simulate the cross-sections of proton-induced reactions on both natural and enriched copper. This process resulted in the production of the zinc radioisotopes Zn, Zn, and Zn, which hold significance in diagnostic and therapeutic medicine.

View Article and Find Full Text PDF

AI-Driven Discovery of Highly Specific and Efficacious hCES2A Inhibitors for Ameliorating Irinotecan-Triggered Gut Toxicity.

J Med Chem

March 2025

State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine; Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.

The anticancer agent irinotecan often induces severe delayed-onset diarrhea, inhibiting human carboxylesterase 2A (hCES2A) can significantly alleviate irinotecan-triggered gut toxicity (ITGT). This work presents an efficient workflow for design and developing novel efficacious hCES2A inhibitors. A well-training machine learning model identified as a lead compound, while compound was developed as a novel time-dependent hCES2A inhibitor (IC = 0.

View Article and Find Full Text PDF

The emergence and rapid spread of multidrug-resistant strains pose a great challenge to the quality and safety of agricultural products and the efficient use of pesticides. Previously unidentified fungicides and targets are urgently needed to combat -associated infections as alternative therapeutic options. In this study, the promising compound Z24 demonstrated efficacy against all tested plant pathogenic fungi.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!