Penetrating aortic ulcer (PAU) is an acute aortic syndrome characterized by a high rupture risk. There are several PAU-treatment procedures indicated for the management of this pathology associated with different effects on vessel morphology and hemodynamics. A deep evaluation of the different types of treatment may be helpful in decision making. Computational Fluid Dynamics (CFD) is a powerful tool for detailed inspection of cardiovascular diseases. The aim of this work was to implement a comparative analysis based on CFD evaluation of the effects of two type of PAU treatments. Thoracic endovascular aortic repair (TEVAR) with a left subclavian artery (LSA) branched aortic endograft (SBSG) and a hybrid approach including TEVAR and carotid-LSA bypass were considered. Aortic anatomical models were created from computed tomography (CT) images acquired before and after PAU treatment with SBSG for three patients. Starting from these models, a new aortic geometry corresponding to the outcome of the hybrid strategy was generated. Morphological analysis and CFD simulations were carried out for all aortic models to evaluate LSA outflow for the same predefined boundary conditions. Reductions in LSA diameter were found between aortic models before and after the SBSG (18.2%, 20.8%, and 12.4% for CASE 1, CASE 2, and CASE 3, respectively). The flow rate at LSA changed between pre-configuration and aortic configuration after the PAU treatments: an averaged decrement of 1.08% and 7.5% was found for SBSG and the hybrid approach, respectively. The larger increase in pressure drop between the aortic arch and the LSA extremity was shown in the hybrid approach for all cases. CFD simulations suggest that SBSG preserves LSA perfusion more than a hybrid strategy and has less impact on thoracic aorta hemodynamics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856155 | PMC |
http://dx.doi.org/10.3390/jcm14041290 | DOI Listing |
Small Methods
March 2025
Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
The modern era demands multifunctional materials to support advanced technologies and tackle complex environmental issues caused by these innovations. Consequently, material hybridization has garnered significant attention as a strategy to design materials with prescribed multifunctional properties. Drawing inspiration from nature, a multi-scale material design approach is proposed to produce 3D-shaped hybrid materials by combining chaotic flows with direct ink writing (ChDIW).
View Article and Find Full Text PDFInorg Chem
March 2025
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
Integrating mixed electron donor (D) and electron acceptor (A) ligands into metal-organic frameworks (MOFs) is an effective yet relatively unexplored approach for improving the anode performance of hybrid lithium-ion capacitors (HLICs). In this study, using an electron donor 2,6-bis(4'-pyridyl)tetrathiafulvalene and an electron acceptor ,'-bis(5-isophthalic acid) naphthalene diimide as ligands, a new Zn-TTF/NDI MOF () is constructed as a pseudocapacitive anode of HLICs. Crystallographic characterization revealed that MOF adopts a two-dimensional (2D) coordination network.
View Article and Find Full Text PDFFront Public Health
March 2025
Viatris, Amstelveen, Netherlands.
Healthcare systems worldwide are under increasing pressure due to aging populations, rising prevalence of chronic diseases, and heightened patient expectations. Generational differences significantly impact perceptions of health, healthcare decision-making, use of digital technologies, and attitudes toward preventative health. This perspective article explores these differences through the lens of Generational Cohort Theory, focusing on six generations: the Silent Generation, Baby Boomers, Generation X, Millennials, Generation Z, and Generation Alpha.
View Article and Find Full Text PDFIn recent years, renewable hybrid power plants (HPPs) have experienced rapid expansion. Energy management systems (EMSs) are vital to these facilities, helping maximize economic returns for owners and shaping operational strategies across various time scales. However, a comprehensive review of advancements in this field is still lacking.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
March 2025
Department of Medicine, Laboratory for Systems Medicine, University of Florida, Gainesville, FL, USA.
The objective of precision medicine is to tailor interventions to an individual patient's unique characteristics. A key technology for this purpose involves medical digital twins, computational models of human biology that can be personalized and dynamically updated to incorporate patient-specific data. Certain aspects of human biology, such as the immune system, are not easily captured with physics-based models, such as differential equations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!