In this paper, high-purity zinc selenide (ZnSe) prepared by the Chemical Vapor Deposition (CVD) method was used as the raw material, and iron ion-doped zinc selenide polycrystals were successfully fabricated through the thermal diffusion method at 1100 °C for 30 h. The results showed that iron ions (Fe) successfully penetrated into the zinc selenide crystals, but the concentration of iron ions inside the crystals was relatively low, and the crystals exhibited numerous defects. To address this issue, we performed secondary sintering and annealing on the samples under high-temperature and high-pressure (HPHT) conditions, with the annealing temperature range set at 900-1200 °C. The results demonstrated that, under the synergistic effects of high temperature and high pressure, the lattice spacing in the crystals significantly decreased, defects were reduced, the distribution of iron ions became more uniform, and the concentration of iron ions in the central region increased. Additionally, the density and hardness of the samples were significantly improved. The method of secondary sintering under high-temperature and high-pressure provides a novel approach for the preparation of iron ion-doped zinc selenide polycrystalline ceramics, contributing to the enhancement of ceramic properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857534 | PMC |
http://dx.doi.org/10.3390/ma18040896 | DOI Listing |
Mikrochim Acta
March 2025
School of Engineering, Deakin University, Geelong, Victoria, 3126, Australia.
This paper presents the design and evaluation of an optimized prism-based surface plasmon resonance (SPR) biosensor for the early detection of various cancer types. The Kretschmann configuration-based SPR sensor integrates multiple novel layers, including silver (Ag), zinc selenide (ZnSe), lead telluride (PbTiO ), and silver nanocomposite layers. The SPR sensor is analyzed with angular interrogation analysis, which utilizes the attenuated total reflection (ATR) approach for investigating the refractive index component and detecting different forms of cancer cells.
View Article and Find Full Text PDFMaterials (Basel)
February 2025
Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China.
In this paper, high-purity zinc selenide (ZnSe) prepared by the Chemical Vapor Deposition (CVD) method was used as the raw material, and iron ion-doped zinc selenide polycrystals were successfully fabricated through the thermal diffusion method at 1100 °C for 30 h. The results showed that iron ions (Fe) successfully penetrated into the zinc selenide crystals, but the concentration of iron ions inside the crystals was relatively low, and the crystals exhibited numerous defects. To address this issue, we performed secondary sintering and annealing on the samples under high-temperature and high-pressure (HPHT) conditions, with the annealing temperature range set at 900-1200 °C.
View Article and Find Full Text PDFBioprocess Biosyst Eng
February 2025
Department of Biology, Science Faculty, Ataturk University, 25240, Erzurum, Turkey.
This study assesses the antimicrobial, antibiofilm, and antiurease properties of selenium (Se), zinc (Zn), and zinc selenide (ZnSe) nanoparticles (NPs) against clinically pathogenic strains of Streptococcus salivarius and Proteus mirabilis. The Se, Zn, and ZnSe NPs, synthesized by Pseudomonas aeruginosa OG1, were characterized using transmission electron microscopy (TEM) revealing average sizes of approximately 30 ± 10 nm, 30 ± 15 nm, and 40 ± 10 nm, respectively. Atomic force microscopy (AFM) was used to examine the morphological and topological characteristics of the NPs.
View Article and Find Full Text PDFA 2.6-fold spectral broadening of mid-infrared femtosecond µJ-level pulses has been achieved using an unfolded multi-pass configuration of germanium plates and zinc selenide lenses. This method maintains a throughput higher than 60% while preserving the spatial quality and the temporal duration of the input beam.
View Article and Find Full Text PDFACS Nano
January 2025
Optoelectronic Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
InP/ZnSe/ZnS core/shell/shell quantum dots are the most investigated quantum dot material for commercial applications involving visible light emission. The inner InP/ZnSe interface is complex since it is not charge balanced, and the InP surface is prone to oxidation. The role of oxidative defects at this interface has remained a topic of debate, with conflicting reports of both detrimental and beneficial effects on the quantum dot properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!