This research paper presents the findings of a design optimization analysis conducted on additive-manufactured thermoplastic sandwich structures with hexagonal honeycombs subjected to quasi-static three-point bending. Based on experimental results, finite element analysis, and analytical models, the relationship between four selected design variables (i.e., cell wall length ratio, cell wall angle, cell wall thickness, and skin thickness) and the structure's mass, flexural stiffness, and maximum load capacity was determined. The influence of each design variable on the aforementioned structural properties was mathematically represented using three scaling laws to formulate a multi-objective optimization problem. Two conflicting objective functions, one for the mass and the other for the reciprocal of the maximum load capacity, along with a nonlinear constraint equation for the minimum allowed flexural stiffness of the sandwich structure were developed. The optimal values of the design variables were determined using two optimization methods, the Pareto optimal front and genetic algorithm, and by applying the Improved Minimum Distance Selection Method (IMDSM). Optimized designs were obtained for different values of flexural stiffness. It was found that, independently of the stiffness constraint value, the optimal value of the cell wall length ratio was 0.2 and the optimal cell wall thickness was 1.4 mm, which correspond to the minimum cell wall length ratio and maximum cell wall thickness considered in this study, respectively. On the other hand, if higher flexural stiffness is required for the structure, both cell wall angle and skin thickness must be increased accordingly. Furthermore, an increase in flexural stiffness is accompanied by an increase in both the mass and maximum load capacity of the structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857674PMC
http://dx.doi.org/10.3390/ma18040867DOI Listing

Publication Analysis

Top Keywords

cell wall
32
flexural stiffness
20
wall length
12
length ratio
12
wall thickness
12
maximum load
12
load capacity
12
quasi-static three-point
8
three-point bending
8
design variables
8

Similar Publications

Postoperative adhesions are abrogated by a sustained-release anti-JUN therapeutic in preclinical models.

Sci Transl Med

March 2025

Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.

Postoperative abdominal adhesions are the leading cause of bowel obstruction and a cause of chronic pain and infertility. Adhesion formation occurs after 50 to 90% of abdominal operations and has no proven preventative or treatment strategy. Abdominal adhesions derive primarily from the visceral peritoneum and are composed of polyclonally proliferating tissue-resident fibroblasts.

View Article and Find Full Text PDF

Splenic red pulp macrophages eliminate the liver-resistant from the blood circulation of mice.

Sci Adv

March 2025

Center for Infectious Biology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China.

Invasive infections by encapsulated bacteria are the major cause of human morbidity and mortality. The liver resident macrophages, Kupffer cells, form the hepatic firewall to clear many encapsulated bacteria in the blood circulation but fail to control certain high-virulence capsule types. Here we report that the spleen is the backup immune organ to clear the liver-resistant serotypes of (pneumococcus), a leading human pathogen.

View Article and Find Full Text PDF

Introduction: Antimicrobial resistance (AMR) is one of the major global concerns in the current scenario. Mass-gathering events in fast-developing and densely populated areas may contribute to antibiotic resistance. Despite meticulous planning and infrastructure development, the effect of mass gatherings on microbial ecosystems and antibiotic resistance must be investigated.

View Article and Find Full Text PDF

Biological structures provide inspiration for developing advanced materials from sustainable resources, enabling passive structural morphing. Despite an increasing interest for parsimony-oriented innovation, sustainable shape-changing materials based on renewable resources remain underexplored. In this work, the architecture of a single plant fiber cell wall (S, for instance) is simplified to design novel concepts of 4D printed tubular moisture-driven structural actuators, using the hygromorphic properties of continuous flax fiber (cFF) reinforced materials.

View Article and Find Full Text PDF

MicroRNAs function as post-transcriptional regulators in gene expression and control a broad range of biological processes in metazoans. The formation of multinucleated muscles is essential for locomotion, growth, and muscle repair. microRNAs have also emerged as important regulators for muscle development and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!