The human body is known as a responsive healing machine, but sometimes, broken bones do not heal, especially if a bacterial infection is present. The present study describes the fabrication and characterization of a nanocomposite hydrogel patch incorporated with silicon nitride and magnesium oxide (MgO) deposited on the halloysite nanotube (HNT) surface using a facile and inexpensive electrodeposition coating process. Scanning electron microscopy (SEM) was used to observe the surface morphology of the MgO/HNT surface coating and the nanocomposite patch. Material characterization, including SEM, contact angle, pore size analysis, and tensile properties, was performed to determine the composite's structure and material properties. and bacterial cultures were used to test the antimicrobial properties. Cellular response to MgO/HNTs was studied using mouse embryonic fibroblasts. The nanocomposite hydrogel patch was discovered to possess inherent properties when tested against bacterial cultures, and it was found to enhance fibroblast cell migration and proliferation. The nanocomposite hydrogel patch also showed sustained drug release. Materials involved in the fabrication helped in the swelling properties by which the nanocomposite hydrogel patch has approximately 400% of its initial weight discovered during the swelling test.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11855668 | PMC |
http://dx.doi.org/10.3390/ijms26041734 | DOI Listing |
Adv Mater
March 2025
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
The distribution of electrical potentials and current in exogenous electrostimulation has significant impacts on its effectiveness in promoting tissue repair. However, there is still a lack of a flexible, implantable power source capable of generating customizable patterned electric fields for in situ electrostimulation(electrical stimulation). Herein, this study reports a fuel cell patch (FCP) that can provide in situ electrostimulation and a hypoxic microenvironment to promote tissue repair synergistically.
View Article and Find Full Text PDFInt J Mol Sci
March 2025
Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK.
Myocardial infarction remains a leading cause of death worldwide due to the heart's limited regenerative capability and the current lack of viable therapeutic solutions. Therefore, there is an urgent need to develop effective treatment options to restore cardiac function after a heart attack. Stem cell-derived cardiac cells have been extensively utilised in cardiac tissue regeneration studies.
View Article and Find Full Text PDFBiomed Chromatogr
April 2025
School of Pharmacy, KPJ Healthcare University, Nilai, Negeri Sembilan, Malaysia.
Metformin has been a cornerstone in the management of type 2 diabetes mellitus (T2DM) for more than 50 years, either alone or in combination with other therapies. This oral antihyperglycemic agent, also known as dimethylbiguanide, plays a crucial role in regulating noninsulin-dependent diabetes mellitus and is widely prescribed globally for various medical conditions. Recent advancements in its formulations have aimed to increase its effectiveness, tolerance, and nonglycemic effects.
View Article and Find Full Text PDFBME Front
March 2025
Department of Biomedical Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul, Turkey.
This study aims to develop and characterize electroactive hydrogels based on reduced bacterial cellulose (BC) and TiCT -MXene for their potential application in wound healing and real-time monitoring. The integration of TiCT -MXene into BC matrices represents a novel approach to creating multifunctional hydrogels that combine biocompatibility, electrical conductivity, and mechanical durability. These properties make the hydrogels promising candidates for advanced wound care and real-time monitoring applications.
View Article and Find Full Text PDFInt Wound J
March 2025
Department of Dermatology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.
Modern wound dressings have revolutionised wound care, offering optimal healing environments. However, their widespread use has led to a significant increase in allergic reactions, particularly among patients with chronic leg ulcers. The complex chemical compositions of these dressings can trigger allergic responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!