Dihydronicotinamide rioside (NRH), the reduced form of nicotinamide riboside (NR), is a recently identified, naturally occurring precursor of arguably the most crucial cofactor for cellular function, nicotinamide adenine dinucleotide (NAD+). Recent investigation suggests that NRH is more adept at increasing NAD+ stores than traditional NAD+ precursors, and such extreme NAD+ boosting via NRH supplementation induces cytotoxicity in certain cellular contexts. It has also been shown that the lack of functional BRCA protein in epithelial ovarian cancer (EOC) directly impacts intracellular NAD+ levels. Given that altered cellular metabolism and DNA repair mechanisms are central alterations in EOC, and these processes are functionally dependent on NAD+, we sought to assess whether NRH supplementation in EOC cell lines enhanced cellular cytotoxicity alone and in combination with standard therapeutic agents. Significant cytotoxicity was noted in NRH treated cells (~40%) with minimal cell death in the nicotinic acid (NA)-treated lines. Levels of NAD(P)H were confirmed to have increased with NRH supplementation, albeit at different levels among the different cell lines. Overall, the cytotoxicity associated with NRH supplementation appears to be independent of ROS generation. Strikingly, NRH supplementation enhanced cytotoxicity of carboplatin in OVCAR8, but not ES2 or SKOV3. Paclitaxel cytotoxicity was also enhanced by the addition of NRH in OVCAR8, but not ES2 or SKOV3 cell lines. NA supplementation had no effect on baseline treatment-induced cytotoxicity. PARP inhibition by olaparib requires NAD+. Interestingly, NRH supplementation enhanced olaparib cytotoxicity in SKOV3 and OVCAR8, but not ES2 cells. NRH in combination with olaparib completely altered mitochondrial respiration, thereby shutting down energy consumption, which would lead to cell death. Coupled together with expression data of key enzymes required for NRH/NAD metabolism, this could be key in understanding mechanisms of cell death with NRH supplementation. Here, we showed that in the context of EOC, exploitation of the NAD+ bioenergetic phenotype through NRH supplementation is a biologically feasible strategy to enhance the response of traditional therapy with potentially minimal toxicity. These data suggest several potential mechanisms by which cellular NAD+ availability impacts treatment efficacy and resistance and highlights the potential utility of NAD+ metabolomics as a biomarker to guide treatment decisions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11855075PMC
http://dx.doi.org/10.3390/ijms26041719DOI Listing

Publication Analysis

Top Keywords

nrh supplementation
36
nrh
14
cell lines
12
cell death
12
ovcar8 es2
12
nad+
11
supplementation
10
nad+ boosting
8
boosting nrh
8
treatment efficacy
8

Similar Publications

Dihydronicotinamide rioside (NRH), the reduced form of nicotinamide riboside (NR), is a recently identified, naturally occurring precursor of arguably the most crucial cofactor for cellular function, nicotinamide adenine dinucleotide (NAD+). Recent investigation suggests that NRH is more adept at increasing NAD+ stores than traditional NAD+ precursors, and such extreme NAD+ boosting via NRH supplementation induces cytotoxicity in certain cellular contexts. It has also been shown that the lack of functional BRCA protein in epithelial ovarian cancer (EOC) directly impacts intracellular NAD+ levels.

View Article and Find Full Text PDF

Defining NAD(P)(H) Catabolism.

Nutrients

July 2023

Department of Pharmacology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, USA.

Dietary vitamin B3 components, such as nicotinamide and nicotinic acid, are precursors to the ubiquitous redox cofactor nicotinamide adenine dinucleotide (NAD). NAD levels are thought to decline with age and disease. While the drivers of this decline remain under intense investigation, strategies have emerged seeking to functionally maintain NAD levels through supplementation with NAD biosynthetic intermediates.

View Article and Find Full Text PDF

Photon-counting Detector CT with Deep Learning Noise Reduction to Detect Multiple Myeloma.

Radiology

January 2023

From the Department of Radiology (F.I.B., N.R.H., A.F., K.R., K.N.G., S.L., C.H.M., J.G.F.), Division of Biomedical Statistics and Informatics, Department of Quantitative Health Sciences (N.B.L.), and Division of Hematology, Department of Medicine (S.K., J.M.C.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Siemens Medical Solutions USA, Malvern, Pa (E.R.S.).

Background Photon-counting detector (PCD) CT and deep learning noise reduction may improve spatial resolution at lower radiation doses compared with energy-integrating detector (EID) CT. Purpose To demonstrate the diagnostic impact of improved spatial resolution in whole-body low-dose CT scans for viewing multiple myeloma by using PCD CT with deep learning denoising compared with conventional EID CT. Materials and Methods Between April and July 2021, adult participants who underwent a whole-body EID CT scan were prospectively enrolled and scanned with a PCD CT system in ultra-high-resolution mode at matched radiation dose (8 mSv for an average adult) at an academic medical center.

View Article and Find Full Text PDF

Nicotinamide adenine dinucleotide (NAD) metabolism plays an important role in the regulation of immune function. However, a complete picture of how NAD, its metabolites, precursors, and metabolizing enzymes work together in regulating immune function and inflammatory diseases is still not fully understood. Surprisingly, few studies have compared the effect of different forms of vitamin B3 on cellular functions.

View Article and Find Full Text PDF

Nicotinamide and acute kidney injury.

Clin Kidney J

December 2021

Laboratory of Experimental Nephrology, Research Institute-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, 28040 Madrid, Spain.

In a recent issue of , Piedrafita reported that urine tryptophan and kynurenine are reduced in cardiac bypass surgery patients that develop acute kidney injury (AKI), suggesting reduced activity of the kynurenine pathway of nicotinamide (NAM) adenine dinucleotide (NAD) synthesis from tryptophan. However, NAM supplementation aiming at repleting NAD did not replete kidney NAD and did not improve glomerular filtration or reduce histological injury in ischaemic-reperfusion kidney injury in mice. The lack of improvement of kidney injury is partially at odds with prior reports that did not study kidney NAD, glomerular filtration or histology in NAM-treated wild-type mice with AKI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!