The development of BACE-1 (β-site amyloid precursor protein cleaving enzyme 1) inhibitors is a crucial focus in exploring early treatments for Alzheimer's disease (AD). Recently, graph neural networks (GNNs) have demonstrated significant advantages in predicting molecular activity. However, their reliance on graph structures alone often neglects explicit sequence-level semantic information. To address this limitation, we proposed a Graph and multi-level Sequence Fusion Learning (GSFL) model for predicting the molecular activity of BACE-1 inhibitors. Firstly, molecular graph structures generated from SMILES strings were encoded using GNNs with an atomic-level characteristic attention mechanism. Next, substrings at functional group, ion level, and atomic level substrings were extracted from SMILES strings and encoded using a BiLSTM-Transformer framework equipped with a hierarchical attention mechanism. Finally, these features were fused to predict the activity of BACE-1 inhibitors. A dataset of 1548 compounds with BACE-1 activity measurements was curated from the ChEMBL database. In the classification experiment, the model achieved an accuracy of 0.941 on the training set and 0.877 on the test set. For the test set, it delivered a sensitivity of 0.852, a specificity of 0.894, a MCC of 0.744, an F1-score of 0.872, a PRC of 0.869, and an AUC of 0.915. Compared to traditional computer-aided drug design methods and other machine learning algorithms, the proposed model can effectively improve the accuracy of the molecular activity prediction of BACE-1 inhibitors and has a potential application value.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11855840PMC
http://dx.doi.org/10.3390/ijms26041681DOI Listing

Publication Analysis

Top Keywords

molecular activity
16
bace-1 inhibitors
16
predicting molecular
12
activity bace-1
12
graph multi-level
8
multi-level sequence
8
sequence fusion
8
fusion learning
8
graph structures
8
smiles strings
8

Similar Publications

Amphipathic character, encoded within polar sequence patterns of antimicrobial peptides, is a critical structural feature that influences membrane disruptive behavior. Similarly, polar sequence patterns induce self-assembly of amphipathic peptides, which results in the formation of ordered supramolecular structures. The relationship between self-assembly and membrane activity remains an open question of relevance for the development of effective antimicrobial peptides.

View Article and Find Full Text PDF

A novel pheophorbide derivative, trimethyl-152-[L-aspartyl]pheophorbide a was synthesised and investigated for anti-tumor activity. The prepared photosensitizer had good absorption in the phototherapeutic window and high ROS yields. It exhibited excellent phototoxicity higher than reference compound m-THPC when irradiated by 650 nm light in vitro, and obvious photodynamic anti-tumor effect in vivo.

View Article and Find Full Text PDF

Detoxifying reactive oxygen species (ROS) that accumulate under saline conditions is crucial for plant salt tolerance. The Salt Overly Sensitive (SOS) pathway functions upstream, while flavonoids act downstream, in ROS scavenging under salt stress. However, the potential crosstalk between the SOS pathway and flavonoids in regulating salt stress responses and the associated mechanisms remain largely unexplored.

View Article and Find Full Text PDF

For the effective growth of malignant tumors, including glioblastoma, the necessary factors involve endoplasmic reticulum (ER) stress, hypoxia, and the availability of nutrients, particularly glucose. The ER degradation enhancing alpha-mannosidase like protein 1 (EDEM1) is involved in ER-associated degradation (ERAD) targeting misfolded glycoproteins for degradation in an N-glycan-independent manner. EDEM1 was also identified as a new modulator of insulin synthesis and secretion.

View Article and Find Full Text PDF

The efficient removal of CO from exhaust streams and even directly from air is necessary to forestall climate change, lending urgency to the search for new materials that can rapidly capture CO at high capacity. The recent discovery that diamine-appended metal-organic frameworks can exhibit cooperative CO uptake via the formation of ammonium carbamate chains begs the question of whether simple organic polyamine molecules could be designed to achieve a similar switch-like behavior with even higher separation capacities. Here, we present a solid molecular triamine, 1,3,5-tris(aminomethyl)benzene (TriH), that rapidly captures large quantities of CO upon exposure to humid air to form the porous, crystalline, ammonium carbamate network solid TriH(CO)·HO (TriHCO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!