Potato dry rot and wilt are the most important soil- and seed-borne diseases in potatoes. They cause high economic losses during potato growth and storage across the world. Previous observations have shown that dryocrassin ABBA can induce resistance in potatoes. However, little is known about whether dryocrassin ABBA can suppress . In this research, we determined that exogenous dryocrassin ABBA significantly inhibited the mycelial growth, changed the cell ultrastructure, increased the MDA content, and decreased the antioxidant enzyme activity of . The transcriptome analysis of with or without dryocrassin ABBA indicated that 1244 differentially expressed genes (DEGs) were identified, of which 594 were upregulated and 650 were downregulated. GO term analysis showed that the DEGs were mostly related to biological processes. The KEGG pathway was mainly related to carbohydrate, amino acid, and lipid metabolism. Moreover, most of the expressions of PCWDEs, HSPs, and MFS were downregulated, decreasing the stress capacity and weakening the pathogenicity of with dryocrassin ABBA treatment. These findings contribute to a new understanding of the direct functions of dryocrassin ABBA on and provide a potential ecofriendly biocontrol approach for potato dry rot and wilt.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11855913PMC
http://dx.doi.org/10.3390/ijms26041573DOI Listing

Publication Analysis

Top Keywords

dryocrassin abba
28
potato dry
8
dry rot
8
rot wilt
8
dryocrassin
7
abba
7
inhibitory mechanism
4
mechanism dryocrassin
4
abba potato
4
wilt soil-
4

Similar Publications

Potato dry rot and wilt are the most important soil- and seed-borne diseases in potatoes. They cause high economic losses during potato growth and storage across the world. Previous observations have shown that dryocrassin ABBA can induce resistance in potatoes.

View Article and Find Full Text PDF

Screening novel antiviral compounds to treat Clostridioides difficile infections.

PLoS One

December 2024

Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America.

Clostridioides difficile is a major cause of nosocomial infections, often associated with individuals who have gut dysbiosis from previous antibiotic therapies. C. difficile infections (CDI) have a high recurrence rate and impose significant financial and mortality burdens on the healthcare system.

View Article and Find Full Text PDF

Anticoronavirus activity of rhizome of Dryopteris crassirhizoma via multistage targeting of virus entry and viral proteases, Mpro and PLpro.

J Ethnopharmacol

October 2024

Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, Republic of Korea; KIOM School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea. Electronic address:

Ethnopharmacological Relevance: The rhizome of Dryopteris crassirhizoma Nakai (Dryopteridaceae, RDC), a traditional East Asian herbal medicine, possesses a broad spectrum of medicinal properties, including anti-inflammatory, anticancer, antibacterial, and antiviral activities.

Aim Of The Study: This study investigates the 30% ethanolic extract of RDC's antiviral potential against human coronavirus OC43 (HCoV-OC43), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and its variants infections.

Materials And Methods: A 30% ethanolic extract of RDC or its components, filixic acid ABA (PubChem CID: 15081408) and dryocrassin ABBA (PubChem CID: 3082025) were treated with Human Coronavirus infection (HCoV-OC43, SARS-CoV-2 and its variants).

View Article and Find Full Text PDF

The rhizome of Nakai. (Dryopteridaceae) has been used in traditional medicine in East Asia and has recently been reported to have anticancer, anti-inflammation, and antibacterial activity as well as antiviral activity. Natural phloroglucinols from , dryocrassin ABBA and filixic acid ABA were reported to inhibit influenza virus infection with an inhibitory activity on neuraminidase.

View Article and Find Full Text PDF

To explore the role of dryocrassin ABBA (ABBA) in the prevention and treatment of Streptococcus pneumoniae (S. pneumoniae) infections in vitro, a minimal inhibitory concentration test, growth curve assay, hemolysis assay, BacLight LIVE/DEAD staining experiments, oligomerization inhibition assay, time-killing test, LDH release detection assay and cytotoxicity test were performed to evaluate the efficacy of ABBA against S. pneumoniae infections in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!