Photoperiod Management in Farm Animal Husbandry: A Review.

Animals (Basel)

State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

Published: February 2025

This review aims to examine the effects of the photoperiod on farm animals and to provide insights into how lighting management can optimize production performance, reproduction, and welfare. The production performance of farm animals is influenced by a variety of factors, such as diet, breed, and environment. Among these, lighting is a crucial component of the feeding environment. With the advancement of intensive farming, lighting measures are increasingly receiving attention. The photoperiod regulates the biological rhythms of animals and affects the secretion of hormones within the animal's body, particularly melatonin. Melatonin regulates the secretion and release of several other hormones through various pathways, such as growth hormone, prolactin, and gonadotropins. Therefore, the environmental light cycle participates in a variety of physiological activities within animals. An appropriate photoperiod can enhance the production performance, reproduction performance, and welfare conditions of farm animals. Choosing the appropriate lighting duration based on different animals, physiological stages, and production purposes can enhance the economic benefits of farms. In this review, we summarized the recent findings on the impact of photoperiods in different farm animal feeding environments on animal husbandry, although research on the suitable photoperiod for some animals might be outdated and is also discussed in this article. For lactating dairy cows, calves, poultry, pigs (excluding boars), and rabbits, continuous light exposure exceeding 12 h per day can be implemented to enhance growth and production performance. In contrast, for boars and goats, daily light exposure should be limited to less than 10 h to optimize reproductive and productive efficiency. Overall, this review aimed to provide theoretical support for research on the optimal photoperiod for farm animals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851680PMC
http://dx.doi.org/10.3390/ani15040591DOI Listing

Publication Analysis

Top Keywords

farm animals
16
production performance
16
farm animal
8
animal husbandry
8
photoperiod farm
8
animals
8
performance reproduction
8
light exposure
8
photoperiod
6
farm
6

Similar Publications

The aim of this study was to identify which biosecurity assessment methods (BAMs) are currently used in practice in animal farms. To address this, a structured questionnaire was developed to gather information such as the animal species, main objectives, type of enforcement, output generated and feedback of the result. In the context of the BETTER Cost Action project, country representatives identified in each of their countries which BAMs were used and completed an online survey.

View Article and Find Full Text PDF

An investigation was conducted to assess the efficacy of a novel antioxidant supplementation, Transcare, in alleviating transportation-induced stress among Bannur sheep. Thirty female Bannur sheep of 10-12 months, were selected and randomly assigned to two groups: Bannur Non-supplemented (BNS) (n = 15) and Bannur Supplemented (BS) (n = 15). The BS was supplemented with antioxidant powder (Transcare) orally at a dose of 10 g/animal, dissolved in 10 mL drinking water, 45-60 min preload.

View Article and Find Full Text PDF

A review of how colors clue us into gross diagnosis in domestic animals.

Vet Pathol

March 2025

Universidade Federal do Mato Grosso do Sul, Campo Grande, Brazil.

Different tissues have a normal color spectrum that reflects their cellular composition and/or metabolic features. Similarly, distinct color variations may occur in tissues that have undergone pathologic or nonpathologic changes. Common examples of color changes in domestic animal tissues include red (associated with erythrocytes, hemoglobin, and myoglobin), brown (ferric hemoglobin or myoglobin, suppurative inflammation, lipid oxidation, postmortem autolysis, formalin fixation, neoplasms arising from cytochrome-rich tissues), yellow (hemoglobin and iron degradation, biliary pigment and by-products, carotenes, keratin, necrosis, suppurative or fibrinous inflammation), green (hemoglobin and iron degradation, biliary pigment and by-products, meconium, eosinophilic or suppurative inflammation, oomycete and algal infections), white (lack of blood, adipose tissue and its neoplasms, chylous effusion, necrosis, mineralization, fibrosis, lymphoid tissue, round cell neoplasms), translucent (transudate, cysts), black to gray (hemoglobin and iron degradation, melanin, carbon, tattoos), and blue to purple (poorly oxygenated blood, tattoos).

View Article and Find Full Text PDF

In farm animals, little is known about the relationship between energy metabolism of immune cells and their activation state. Moreover, there has recently been evidence that dexamethasone, a powerful glucocorticoid-based drug, can exert its anti-inflammatory effects by interfering with the energy metabolism of immune cells, but the mechanisms are not yet fully understood. To address these knowledge gaps, we explored the connection between the energy metabolism of porcine peripheral blood mononuclear cells (PBMCs) and their response to pro- and anti-inflammatory stimulation with lipopolysaccharide (LPS) and dexamethasone (DEX) .

View Article and Find Full Text PDF

Molecular detection and characterization of haemoparasites in captive tigers () from Thailand.

Curr Res Parasitol Vector Borne Dis

February 2025

Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Samut Songkhram, 75000, Thailand.

Haemoparasites of the genera , , and , which are known tick-borne pathogens, infect a wide variety of domestic and wild animals. The aim of this study was to conduct a comprehensive molecular detection and characterization of haemoparasites in captive tigers () at a wildlife center in Thailand. From multiplex PCR results, haemoparasites were detected in the blood of 12 out of 17 tigers (70.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!