Retinal degenerations, such as age-related macular degeneration and retinitis pigmentosa, present significant challenges due to genetic heterogeneity, limited therapeutic options, and the progressive loss of photoreceptors in advanced stages. These challenges are compounded by difficulties in precisely targeting residual retinal neurons and ensuring the sustained efficacy of interventions. Optogenetics offers a novel approach to vision restoration by inducing light sensitivity in residual retinal neurons through gene delivery of light-sensitive opsins. This review traces the evolution of opsins in optogenetic therapies, highlighting advancements from early research on channelrhodopsin-2 (ChR2) to engineered variants addressing key limitations. Red-shifted opsins, including ReaChR and ChrimsonR, reduced phototoxicity by enabling activation under longer wavelengths, while Chronos introduced superior temporal kinetics for dynamic visual tracking. Further innovations, such as Multi-Characteristic Opsin 1 (MCO1), optimized opsin performance under ambient light, bridging the gap to real-world applications. Key milestones include the first partial vision restoration in a human patient using ChrimsonR with light-amplifying goggles and ongoing clinical trials exploring the efficacy of opsin-based therapies for advanced retinal degeneration. While significant progress has been made, challenges remain in achieving sufficient light sensitivity for functional vision under normal ambient lighting conditions in a manner that is both effective and safe, eliminating the need for external light-enhancing devices. As research progresses, optogenetic therapies are positioned to redefine the management of retinal degenerative diseases, offering new hope for millions affected by vision loss.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853388PMC
http://dx.doi.org/10.3390/biomedicines13020429DOI Listing

Publication Analysis

Top Keywords

vision restoration
12
residual retinal
8
retinal neurons
8
light sensitivity
8
optogenetic therapies
8
vision
5
retinal
5
evolution light-sensitive
4
light-sensitive proteins
4
proteins optogenetic
4

Similar Publications

The Transformative Role of Artificial Intelligence in Dentistry: A Comprehensive Overview. Part 1: Fundamentals of AI, and its Contemporary Applications in Dentistry.

Int Dent J

March 2025

Department of Restorative Dentistry, College of Dentistry, Ajman University, Ajman, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.

Artificial intelligence (AI) holds immense promise in revolutionising dentistry, spanning, diagnostics, treatment planning and educational realms. This narrative review, in two parts, explores the fundamentals and the multifaceted potential of AI in dentistry. The current article explores the profound impact of AI in dentistry, encompassing diagnostic tools, treatment planning, and patient care.

View Article and Find Full Text PDF

Research on brain plasticity, particularly in the context of deafness, consistently emphasizes the reorganization of the auditory cortex. But to what extent do all individuals with deafness show the same level of reorganization? To address this question, we examined the individual differences in functional connectivity (FC) from the deprived auditory cortex. Our findings demonstrate remarkable differentiation between individuals deriving from the absence of shared auditory experiences, resulting in heightened FC variability among deaf individuals, compared to more consistent FC in the hearing group.

View Article and Find Full Text PDF

The Deep Brain Stimulation (DBS) Think Tank XII was held on August 21st to 23rd. This year we showcased groundbreaking advancements in neuromodulation technology, focusing heavily on the novel uses of existing technology as well as next-generation technology. Our keynote speaker shared the vision of using neuro artificial intelligence to predict depression using brain electrophysiology.

View Article and Find Full Text PDF

The next-generation gene editing tool, prime editing (PE), is adept at correcting point mutations precisely with high editing efficiency and rare off-target events and shows promising therapeutic value in treating hereditary diseases. Retinitis pigmentosa (RP) is the most common type of inherited retinal dystrophy and is characterized by progressive degeneration of retinal photoreceptors and, consequently, visual decline. To date, effective treatments for RP are lacking.

View Article and Find Full Text PDF

Regeneration of retinal ganglion cell-like cells and reconstruction of visual neural circuits in mice with glaucoma.

Exp Eye Res

March 2025

Department of Ophthalmology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China.

Glaucoma is an irreversible blinding eye disease characterized by apoptosis of mature neurons-retinal ganglion cells (RGCs), visual field defect and vision loss. Regeneration of RGCs and reconstruction of the neural connections between the retina and the brain is considered an effective strategy to promote visual restoration in patients with glaucoma. However, there are currently no effective methods for regenerating RGCs to restore vision in clinical practice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!