: Preliminary observations support the view that spinal cord epidural stimulation (scES) combined with trunk-specific training can improve trunk stability during functional activities in individuals with thoracic spinal cord injury (SCI). We studied the acute effects of trunk-specific stimulation on sitting postural control. : Twenty-three individuals with severe cervical SCI were implanted with an epidural stimulator. Postural control was assessed before any activity-based training, without and with trunk-specific scES. In particular, participants performed sitting with upright posture, forward/back lean, and lateral lean activities while sitting on a standard therapy mat. Full-body kinematics and trunk electromyography (EMG) were acquired. Anterior-posterior and lateral trunk displacement along with trunk velocity in all four directions were obtained and used to classify postural control responses. : Compared to no stimulation, application of trunk-specific scES led to trunk anterior-posterior displacement increases during forward/back lean (2.79 ± 0.97 cm; -value = 0.01), and trunk lateral displacement increases during lateral lean (2.19 ± 0.79 cm; -value = 0.01). After digital filtering of stimulation artifacts, EMG root mean square amplitudes for bilateral external oblique, rectus abdominus, and erector spinae muscles were higher with stimulation for all activities (all -values < 0.03). : The results indicate improvements in trunk lean distances and muscle activation when leaning activities are performed with trunk-specific epidural stimulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853460 | PMC |
http://dx.doi.org/10.3390/biomedicines13020394 | DOI Listing |
Front Immunol
March 2025
Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
Background: Osteosarcoma, an aggressive bone malignancy predominantly affecting children and adolescents, presents significant therapeutic challenges with a 5-year survival rate below 30% in metastatic cases. T-cell exhaustion, characterized by the overexpression of immune checkpoint molecules, contributes to osteosarcoma progression and immune evasion. Although targeting these inhibitory pathways has shown potential in restoring T-cell activity, the molecular regulators of T-cell depletion in osteosarcoma are poorly understood.
View Article and Find Full Text PDFFront Neurol
February 2025
Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.
Background: Varicella-zoster virus (VZV) central nervous system infection is typically observed in immunocompromised patients, and there is a lack of studies involving large samples of non-immunocompromised individuals. In this study, we retrospectively analyzed 108 non-immunocompromised patients diagnosed with VZV central nervous system infection.
Methods: This retrospective study was conducted in the Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, China.
Front Cell Dev Biol
February 2025
Wayne State University, Detroit, MI, United States.
Fluids Barriers CNS
March 2025
School of Veterinary Medicine, University of Surrey, Guildford, GU2 7XH, UK.
Cerebrospinal fluid (CSF) plays a crucial role in maintaining brain homeostasis by facilitating the clearance of metabolic waste and regulating intracranial pressure. Dysregulation of CSF flow can lead to conditions like syringomyelia, and hydrocephalus. This review details the anatomy of CSF flow, examining its contribution to waste clearance within the brain and spinal cord.
View Article and Find Full Text PDFJ Neuroinflammation
March 2025
Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
Spinal cord injury (SCI) can cause permanent dysfunction proceeding from multifaceted neuroinflammatory processes that contribute to damage and repair. Fidgetin-like 2 (FL2), a microtubule-severing enzyme that negatively regulates axon growth, microglial functions, and wound healing, has emerged as a potential therapeutic target for central nervous system injuries and neuroinflammation. To test the hypothesis that FL2 knockdown increases acute neuroinflammation and improves recovery after SCI, we examined the effects of nanoparticle-encapsulated FL2 siRNA treatment after a moderate contusion SCI in rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!