Beyond the "Master" Role in Allergy: Insights into Intestinal Mast Cell Plasticity and Gastrointestinal Diseases.

Biomedicines

Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy.

Published: January 2025

Mast cells (MCs) are essential components of the immune system that enter the circulation as immature bone marrow progenitors and differentiate in peripheral organs under the influence of microenvironment factors. As tissue-resident secretory immune cells, MCs rapidly detect the presence of bacteria and parasites because they harbor many surface receptors, which enable their activation via a multitude of stimuli. MC activation has been traditionally linked to IgE-mediated allergic reactions, but MCs play a pivotal role in different physiological and pathological processes. In gut, MCs are essential for the maintenance of gastrointestinal (GI) barrier function, and their interactions with neurons, immune cells, and epithelial cells have been related to various GI disorders. This review recapitulates intestinal MC roles in diseases with a main focus on inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS). Emerging therapies targeting MCs and their mediators in clinical practices will also be discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853218PMC
http://dx.doi.org/10.3390/biomedicines13020320DOI Listing

Publication Analysis

Top Keywords

cells mcs
8
mcs essential
8
immune cells
8
mcs
5
"master" role
4
role allergy
4
allergy insights
4
insights intestinal
4
intestinal mast
4
mast cell
4

Similar Publications

Mast cells (MCs) play a central role in allergic immune responses. MC activation is regulated by several inhibitory immunoreceptors. The CD300 family members CD300a and CD300lf recognize phospholipid ligands and inhibit the FcεRI-mediated activating signal in MCs.

View Article and Find Full Text PDF

Lead halide perovskites are widely recognized for their exceptional defect tolerance, setting the benchmark for high-performance optoelectronic applications. Conversely, low-toxicity perovskite-inspired materials (PIMs) typically exhibit suboptimal optoelectronic performance, primarily due to their intrinsic susceptibility to defects. In this study, we address this limitation by exploring the effects of halide vacancies in PIMs through the synthesis of non-stoichiometric CsBiBrI microcrystals (MCs) with a trigonal crystal structure, incorporating iodine vacancies.

View Article and Find Full Text PDF

Chronic urticaria (CU) arises from a multifaceted interplay of immunological, neurological, and psychological components. Immune dysregulation, mediated through both immunoglobulin E (IgE)-dependent and IgE-independent pathways, plays a pivotal role in CU pathogenesis, involving key effector cells such as mast cells (MCs), basophils, and eosinophils. This dysregulation culminates in the release of histamine, prostaglandins, and other mediators, which precipitate pruritus.

View Article and Find Full Text PDF

GSDMD-mediated mitochondrial dysfunction in marginal cells: A potential driver of inflammation and stria vascularis damage in CIHL.

Proc Natl Acad Sci U S A

March 2025

Department of Otolaryngology, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.

Inflammation is among the known causes of cisplatin-induced hearing loss (CIHL), but its exact pathophysiological mechanisms remain unclear. Herein, we demonstrated that pyroptosis-a recently identified inflammatory type of regulated cell death dependent on gasdermin D (GSDMD)-was activated in the cochleae of cisplatin-treated mice, causing CIHL. Meanwhile, treatment with the GSDMD inhibitor necrosulfonamide alleviated CIHL in these mice.

View Article and Find Full Text PDF

Glomerular filtration function and homeostasis are largely due to the cross-talk between podocytes, endothelial cells, and mesangial cells (MCs). Any disturbance in this association causes glomerular diseases (GD). Cell-based therapies are the best option in the treatment of GD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!