Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Coronary artery disease remains a leading cause of morbidity and mortality worldwide. Acute myocardial infarction results in ischemia-induced cellular dysfunction and death. While timely reperfusion limits myocardial damage, it paradoxically triggers ischemia-reperfusion injury (IRI), exacerbating tissue damage. IRI, first observed in the 1960s, is mediated by complex molecular pathways, including oxidative stress, calcium dysregulation, endothelial dysfunction, and inflammation. This review examines emerging therapeutic strategies targeting IRI, including ischemic preconditioning, postconditioning, pharmacological agents, and anti-inflammatory therapies. Preconditioning serves as an endogenous protection mechanism, while pharmacological postconditioning has become a more clinically feasible approach to target oxidative stress, inflammation, and apoptosis during reperfusion. Pharmacological agents, such as GSK-3β inhibitors, JNK inhibitors, and mesenchymal stem cell-derived exosomes, have shown promise in modulating molecular pathways, including Wnt/β-catenin and NF-κB, to reduce myocardial injury and enhance recovery. Combination therapies, integrating pharmacological agents with mechanical postconditioning, provide a synergistic approach to further protect tissue and mitigate damage. However, translating preclinical findings to clinical practice remains challenging due to discrepancies between animal models and human conditions, particularly with comorbidities such as diabetes and hypertension. Continued research is essential to refine these therapies, optimize clinical application, and address translational challenges to improve outcomes in IRI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851988 | PMC |
http://dx.doi.org/10.3390/antiox14020213 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!