Monitoring plantar foot temperatures is essential for assessing foot health, particularly in individuals with diabetes at increased risk of complications. Traditional thermographic imaging measures foot temperatures in unshod individuals lying down, which may not reflect thermal characteristics of feet in shod, active, real-world conditions. These controlled settings limit understanding of dynamic foot temperatures during daily activities. Recent advancements in wearable technology, such as insole-based sensors, overcome these limitations by enabling continuous temperature monitoring. This study leverages a data-driven clustering approach, independent of pre-selected foot regions or models like the angiosome concept, to explore normative thermal patterns in shod feet with insole-based sensors. Data were collected from 27 healthy participants using insoles embedded with 21 temperature sensors. The data were analysed using clustering algorithms, including k-means, fuzzy c-means, OPTICS, and hierarchical clustering. The clustering algorithms showed a high degree of similarity, with variations primarily influenced by clustering granularity. Six primary thermal patterns were identified, with the "butterfly pattern" (elevated medial arch temperatures) predominant, representing 51.5% of the dataset, aligning with findings in thermographic studies. Other patterns, like the "medial arch + metatarsal area" pattern, were also observed, highlighting diverse yet consistent thermal distributions. This study shows that while normative thermal patterns observed in thermographic imaging are reflected in insole data, the temperature distribution within the shoe may better represent foot behaviour during everyday activities, particularly when enclosed in a shoe. Unlike thermal imaging, the proposed in-shoe system offers the potential to capture dynamic thermal variations during ambulatory activities, enabling richer insights into foot health in real-world conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851639 | PMC |
http://dx.doi.org/10.3390/bioengineering12020143 | DOI Listing |
J Gastrointest Cancer
March 2025
Department of Interventional Therapy, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
Objective: To compare early recurrence patterns, safety, survival and investigate the clinical risk factors of early recurrence (ER) after liver resection or thermal ablation (TA) for patients with colorectal liver metastases (CRLM) with number ≤ 5 and largest diameter ≤ 3 cm.
Materials And Methods: This retrospective study included patients with CRLM who underwent liver resection or TA between January 2016 and December 2021 at two hospitals in China. The Kaplan-Meier method and log-rank test were used to assess recurrence-free survival (RFS) and overall survival (OS).
Small
March 2025
State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China.
Irreversible electroporation (IRE) is a minimally invasive, non-thermal tumor ablation technique that induces nanoscale membrane perforation, leading to immunogenic cell death (ICD). However, IRE alone is limited by uneven electric field attenuation, incomplete tumor ablation, and the immunosuppressive nature of the tumor microenvironment. To address these challenges, a multifunctional nanomaterial, vermiculite nanosheets/calcium peroxide nanosheets (VMT/CaO NSs), is developed to enhance the efficacy of IRE.
View Article and Find Full Text PDFACS Nano
March 2025
Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston,, Texas 77005, United States.
Because of their natural 1D structure combined with intricate chiral variations, carbon nanotubes (CNTs) exhibit various exceptional physical properties, such as ultrahigh thermal conductivity and diameter-dependent electrical behavior, ranging from semiconducting to metallic. While CNTs excel individually at the nanoscale, their 1D and chiral nature can be lost on a macroscopic scale when they are randomly assembled. Therefore, the alignment and organization of CNTs in macroscopic structures is crucial for harnessing their full potential.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Department of Basic and Applied Sciences, A'Sharqiyah University, P.O. Box 42, Ibra 400, Oman.
This study investigates the thermal pinning and depinning behaviors of vortex domain walls (VWs) in constricted magnetic nanowires, focusing on the influence of intrinsic magnetic properties on VW stability under thermal stress. Using micromagnetic simulations, we analyze the roles of saturation magnetization (Ms), uniaxial magnetic anisotropy (Ku), and nanowire geometry in determining VW thermal stability. The modeled nanowire has dimensions of 200 nm (width), 30 nm (thickness), and a 50 nm constriction length, chosen based on the dependence of VW formation on nanowire geometry.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Facultad de Ciencias Básicas, Departamento de Física y Electrónica, Universidad de Córdoba, Monteria 230002, Colombia.
We investigated the hysteresis, pseudo-critical, and compensation behaviors of a quasi-spherical FeCo alloy nanoparticle (2 nm in diameter) using Monte Carlo simulations with thermal bath-type algorithms and a 3D mixed Ising model. The nanostructure was modeled in a body-centered cubic lattice (BCC) through the following configurations: spin S=3/2 for Co and Q=2 for Fe. These simulations reveal that, under the influence of crystal and magnetic fields, the nanoparticle exhibits compensation phenomena, exchange bias, and pseudo-critical temperatures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!