Unraveling Elastic Fiber-Derived Signaling in Arterial Aging and Related Arterial Diseases.

Biomolecules

Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.

Published: January 2025

Arterial stiffening is a significant risk factor for the development of cardiovascular diseases, including hypertension, atherosclerosis, and arteriopathy. The destruction of elastic fibers, accompanied by vascular inflammatory remodeling, is a key process in the progression of arterial stiffening and related pathologies. In young, healthy arteries, intact elastic fibers create a resilient microenvironment that maintains the quiescence of arterial cells. However, with advancing age, these elastic fibers undergo post-translational modifications, such as oxidation, glycosylation, and calcification, leading to their eventual degeneration. This degeneration results in the release of degraded peptides and the formation of an inflammatory, stiffened niche. Elastic fiber degeneration profoundly impacts the proinflammatory phenotypes and behaviors of various arterial cells, including endothelial cells, smooth muscle cells, macrophages, fibroblasts, and mast cells. Notably, the degraded elastic fibers release elastin-derived peptides (EDPs), which act as potent inflammatory molecules. EDPs activate various arterial cellular processes, including inflammatory secretion, cell migration, proliferation, and calcification, by interacting with the elastin receptor complex (ERC). These elastin-related cellular events are commonly observed with aging and in diseased arteries. These findings suggest that the degeneration of the elastic fiber meshwork is a primary event driving arterial inflammation, stiffening, and adverse remodeling with advancing age. Therefore, preserving elastic fibers and blocking the EDP/ERC signaling pathways may offer promising therapeutic strategies for mitigating age-related arterial remodeling and related arterial diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853455PMC
http://dx.doi.org/10.3390/biom15020153DOI Listing

Publication Analysis

Top Keywords

elastic fibers
20
arterial
10
arterial diseases
8
arterial stiffening
8
arterial cells
8
advancing age
8
elastic fiber
8
elastic
7
fibers
5
cells
5

Similar Publications

Purpose: This study aims to investigate the stress distribution in bone tissue, implant, abutment, screw, and bridge restoration when the mesial implant is placed axially and the distal implant is inserted at varying angles in the posterior maxillary region with free-end partial dentition defects, using three-dimensional finite element analysis.

Materials And Methods: Cone-beam computed-tomography were utilized to create 3D reconstruction models of the maxilla. Stereolithography data of dental implants and accessories were used to design a three-unit full zirconia bridge for the maxillary model.

View Article and Find Full Text PDF

Hypertrophic scar (HTS) remains a comorbidity of burn injury, often requiring split thickness skin grafting (STSG) and resulting in symptomatic HTS at grafted sites and STSG donor sites (DS). Literature supports the use of ablative fractional CO2 laser (FLSR) to treat HTS, however many trials lack of control sites and tissue-level examinations. Given the widespread adoption of FLSR for HTS, delegation of non-treated scar sites for the sake of randomized controlled trial (RCT) is troubling for many clinicians.

View Article and Find Full Text PDF

In Vivo and In Vitro Study of a Multifunctional SF/nHAp Corrosion-Resistant Bio-Coating Prepared on MAO Magnesium Alloy via Ultrasonic Spraying.

ACS Biomater Sci Eng

March 2025

Department of Pediatric Dentistry (Department of Preventive Dentistry), School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, No.44-1 Wenhua Road West, Jinan, Shandong 250012, China.

Magnesium alloys are often used in bone repair surgeries due to their biodegradability and excellent elastic modulus, making them a promising alternative to traditional nondegradable implants like titanium alloys. However, their rapid degradation rate limits their use as implants in the body. To enhance the corrosion resistance and bioactivity of magnesium alloys, we applied an ultrasonic spray coating on microarc oxidized (MAO) AZ31 magnesium alloy, using a mixture of silk fibroin (SF) and nanohydroxyapatite (nHAp).

View Article and Find Full Text PDF

We report a rare case of a smooth muscle tumor of uncertain malignant potential arising in the inguinal soft tissue, requiring differential diagnosis from metastatic lymphadenopathy. The patient was a 74-year-old male. On the initial examination, a painless, elastic-firm mass measuring approximately 25 × 15 mm was palpated slightly cephalad and medial to the left inguinal region.

View Article and Find Full Text PDF

Observation of topological hydrogen-bonding domains in physical hydrogel for excellent self-healing and elasticity.

Nat Commun

March 2025

State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China.

Physical hydrogels, three-dimensional polymer networks with reversible cross-linking, have been widely used in many developments throughout the history of mankind. However, physical hydrogels face significant challenges in applications due to wound rupture and low elasticity. Some self-heal wounds with strong ionic bond throughout the network but struggle to immediately recover during cyclic operation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!