Background: Adipose tissue is a widely used autologous soft tissue filler in plastic surgery, particularly for volumetric restoration in cases of soft tissue deficiency. However, effectively controlling the retention rate of transplanted fat remains a major challenge. Therefore, this study aims to explore strategies to enhance fat graft retention. We isolated fascia-derived stem cells (FDSCs) from human superficial fascia and compared their gene expression profiles with those of adipose-derived stem cells (ADSCs). Through bioinformatics analysis and functional experiments, we identified significant differences in the angiogenic potential of the two cell types. Based on sequencing results, we further investigated the roles of hypoxia-inducible factor-1α (HIF-1α) and heme oxygenase-1 (HMOX1). This study highlights the critical potential of FDSCs in improving fat graft retention and promoting angiogenesis, offering new strategies for enhancing graft survival and optimizing tissue regeneration therapies.

Methods: We isolated fascia-derived stem cells (FDSCs) from human superficial fascia and compared them with adipose-derived stem cells (ADSCs). RNA sequencing was performed to analyze gene expression profiles, followed by bioinformatics analysis to identify differences in angiogenic potential. Functional experiments were conducted to investigate the roles of HIF-1α and HMOX1 in angiogenesis.

Results: RNA sequencing revealed significant gene expression differences related to angiogenesis in FDSCs. The expression levels of HMOX1, HIF-1α, and VEGFa were significantly higher in FDSCs than in ADSCs, and HMOX1 positively regulated the expression of HIF-1α and VEGFa. In vitro experiments demonstrated that FDSCs promoted angiogenesis more effectively than ADSCs. In vivo co-transplantation experiments further confirmed that FDSCs improved fat graft retention and vascularization.

Conclusions: We demonstrated that FDSCs can more effectively promote vascularization both in vitro and in vivo, and significantly improve graft retention, indicating their broad potential for future applications in tissue repair and regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11863534PMC
http://dx.doi.org/10.1186/s13287-025-04204-wDOI Listing

Publication Analysis

Top Keywords

stem cells
20
graft retention
20
fat graft
16
fascia-derived stem
12
gene expression
12
enhance fat
8
retention promoting
8
soft tissue
8
isolated fascia-derived
8
fdscs
8

Similar Publications

Zebrafish ETS transcription factor Fli1b functions upstream of Scl/Tal1 during embryonic hematopoiesis.

Biol Open

March 2025

Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA.

During embryonic development vascular endothelial and hematopoietic cells are thought to originate from a common precursor, the hemangioblast. An evolutionarily conserved ETS transcription factor FLI1 has been previously implicated in the hemangioblast formation and hematopoietic and vascular development. However, its role in regulating hemangioblast transition into hematovascular lineages is still incompletely understood.

View Article and Find Full Text PDF

Orchestrated changes in cell arrangements and cell-to-cell contacts are susceptible to cellular stressors during central nervous system development. Effects of mitochondrial complex I inhibition on cell-to-cell contacts have been studied in vascular and intestinal structures; however, its effects on developing neuronal cells are largely unknown. We investigated the effects of the classical mitochondrial stressor and complex I inhibitor, rotenone, on the architecture of neural rosettes-radially organized neuronal progenitor cells (NPCs)-differentiated from human-induced pluripotent stem cells.

View Article and Find Full Text PDF

Harnessing intelligence from brain cells in vitro requires a multidisciplinary approach integrating wetware, hardware, and software. Wetware comprises the in vitro brain cells themselves, where differentiation from induced pluripotent stem cells offers ethical scalability; hardware typically involves a life support system and a setup to record the activity from and deliver stimulation to the brain cells; and software is required to control the hardware and process the signals coming from and going to the brain cells. This review provides a broad summary of the foundational technologies underpinning these components, along with outlining the importance of technology integration.

View Article and Find Full Text PDF

Implementation of a novel hybrid cord blood banking model within a private-public-partnership.

Transfusion

March 2025

Department of Obstetrics and Gynecology, University Hospital of Bern, University of Bern, Bern, Switzerland.

Background: Umbilical cord blood (UCB) stem cells can be collected at birth, cryopreserved, and used for transplantation in hematopoietic diseases. Typically, these stem cells are stored in public banks for allogeneic use or in private depositories for potential future utilization by the family. A proposed third option, hybrid cord blood banking, combines elements of both public and private storage.

View Article and Find Full Text PDF

Enforcement of stem-cell dormancy by nucleophosmin mutation is a critical determinant of unrestricted self-renewal during myeloid leukemogenesis.

Haematologica

March 2025

Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy; Department of Oncology and Haemato-Oncology, University of Milan, Milan.

Mutations in the NPM1 gene (NPMc+) and in the FLT3 gene (FLT3-ITD) represent the most frequent co-occurring mutations in Acute Myeloid Leukemia (AML), yet the cellular and molecular mechanisms of their cooperation remain largely unexplored. Using mouse models that faithfully recapitulate human AML, we investigated the impact of these oncogenes on pre-leukemic and leukemic hematopoietic stem cells (HSCs), both separately and in combination. While both NPMc+ and Flt3-ITD promote the proliferation of pre-leukemia HSCs, only NPMc+ drives extended selfrenewal by preventing the depletion of the quiescent HSC pool.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!