A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Rosmarinic acid promotes mitochondrial fission and induces ferroptosis in triple-negative breast cancer cells. | LitMetric

Rosmarinic acid promotes mitochondrial fission and induces ferroptosis in triple-negative breast cancer cells.

Naunyn Schmiedebergs Arch Pharmacol

College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, 4, Dongqing Road, Huaxi District, Guiyang, 550025, China.

Published: February 2025

Breast cancer is the most common malignant tumor in women. Among its subtypes, triple-negative breast cancer (TNBC) is more aggressive and poses a serious threat to women's health. Rosmarinic acid (RA) is a natural polyphenolic compound known for its diverse pharmacological activities, with its antioxidant and anticancer properties being particularly notable. This study investigated the effects of RA on TNBC cell lines and explored its potential mechanisms. CCK-8 and colony formation assays were used to evaluate the potential inhibitory effects of RA on TNBC cells and to measure intracellular reactive oxygen species (ROS) levels. Flow cytometry was employed to analyze the cell cycle and apoptosis. RNA-seq analysis was performed to investigate the potential mechanisms of RA on MDA-MB-231 cells. RA inhibited the proliferation of TNBC cells in a concentration-dependent manner and reduced intracellular ROS levels. RA induced cell cycle arrest at the G1/G0 phase and promoted apoptosis by decreasing mitochondrial membrane potential. RNA-seq differential expression analysis, identified 1,929 differentially expressed genes, including 601 upregulated genes and 1,328 downregulated genes. Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) showed that these differentially expressed genes were significantly enriched in pathways associated with ferroptosis, ABC transporters, and fatty acid metabolism. Additionally, RA significantly upregulated the expression of dynamin-related protein 1 (DRP1) in MDA-MB-231 cells, promoting mitochondrial fission, disrupting mitochondrial dynamics, and leading to dysfunction. Furthermore, RA increased the expression of intracellular ferroportin and heme oxygenase 1 (HMOX-1), resulting in elevated intracellular iron levels. The study suggests that RA inhibits the proliferation of TNBC cells through multiple mechanisms and may have potential therapeutic effects in the treatment of TNBC.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00210-025-03927-0DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
tnbc cells
12
rosmarinic acid
8
mitochondrial fission
8
triple-negative breast
8
effects tnbc
8
potential mechanisms
8
ros levels
8
cell cycle
8
mda-mb-231 cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!