2D covalent organic frameworks (2D-COFs) have attracted extensive interest in solar energy to hydrogen conversion. However, insufficient light harvesting and difficult exciton dissociation severely limit the improvement of photocatalytic activity for COFs, thereby impeding the progression of this advanced field. In this work, two benzobisoxazole-bridged and fully conjugated 2D-COFs with triazine (COF-JLU44) and pyrene (COF-JLU45) units were constructed for the first time via Knoevenagel polycondensation, and they hold long-range ordered structures, largely acceptable surface area, and fascinating photoelectric properties. Significantly, COF-JLU45 exhibits an impressive hydrogen evolution rate of 272.5 mmol g h and superior reusability in the presence of 1.0 wt% Pt under light irradiation, coupled with a remarkable apparent quantum yield of 12.9% at a long wavelength of 600 nm. Multiple spectroscopy and theoretical simulation demonstrate the ingenious design of COF-JLU45 widen its light absorption and effectively promote the exciton dissociation. This finding contributes valuable insights for constructing metal-free photocatalysts for solar energy conversion and utilization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202501869 | DOI Listing |
J Plant Physiol
March 2025
Department of Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, China. Electronic address:
The small ubiquitin-like protein modifier (SUMO) is a conserved protein that modifies target proteins by attaching to them, changing their functions, localizations, and interactions. However, there is limited knowledge regarding the process of SUMOylation in broccoli (Brassica oleracea var. italica), a highly nutritious vegetable that is widely consumed.
View Article and Find Full Text PDFChemistry
March 2025
Universita degli Studi di Bologna, , Chemistry 'Ciamician', -Via F. Selmi, 2, -40126, Bologna, ITALY.
The tris(2,4,6-trichlorophenyl)methyl radical (TTM) has inspired the synthesis of several luminescent diradicaloids, providing an extraordinary opportunity to control the nature of the low-lying excited states by fine-tuning the diradical character. However, the photophysical properties of TTM-derived diradicals remain not fully understood yet. Here we present a combined theoretical and experimental investigation to elucidate the origin of their luminescence.
View Article and Find Full Text PDFSmall
March 2025
Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.
Most high-performing dimerized acceptors are based on Y-series precursors with superior conjugated π-backbones. The utilization of branch-connected dimerized acceptors can fully leverage the four end groups to enhance molecular packing, thereby potentially improving both the stability of organic solar cells (OSCs) while maintaining high power conversion efficiency (PCE). Therefore, optimizing the linker is critical to fully realizing their potential in improving device performance.
View Article and Find Full Text PDFCell Rep Med
February 2025
Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston 77030, TX, USA.
IMCnyeso, an immune mobilizing monoclonal T cell receptor against cancer (ImmTAC) bispecific (New York esophageal squamous cell carcinoma [NY-ESO]×CD3) T cell engager, targets an NY-ESO-1/L-antigen family member-1 isoform A (LAGE-1A) peptide presented by histocompatibility leukocyte antigen (HLA)-A∗02:01. In this phase 1 study, 28 HLA-A∗02:01+ patients with advanced NY-ESO-1/LAGE-1A-positive advanced tumors (n = 28) receive IMCnyeso weekly intravenously (dose range: 3-300 μg; 7 dose-escalation cohorts). The primary objective is to identify the maximum tolerated dose (MTD) or recommended phase 2 dose (RP2D); additional objectives include preliminary anti-tumor activity, pharmacokinetics, immunogenicity, and pharmacodynamic changes.
View Article and Find Full Text PDFAnal Chem
March 2025
Zhengzhou Key Laboratory of Functional Nanomaterials and Medical Theranostic, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, China.
Synchronous regulation of the photoluminescence and physicochemical characteristics of multicolor carbon dots (CDs) can fully realize their application potential in multicomponent imaging. Herein, by utilizing an acid-regulated synthetic strategy, green-emissive and orange-emissive CDs that target lipid droplets (LDs) and mitochondria (Mito) have been developed for fluorescence visualization of LD-Mito interactions. The finding of different molecular fluorophores reveals that the precursor undergoes different reaction pathways in neutral and acidic conditions, which alters the size of sp-conjugated domain and surface properties for the successful regulation of photoluminescence properties and organelle-targeting ability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!