Due to the strong electronegativity of P in the anion group and the strong P─O covalent bond, NFPP exhibits low electronic and ionic conductivity, hindering its rate capability. A doping modification strategy of selecting La with a large ion radius at Na site has been designed, and the nano-micro architectural NaLa□Fe(PO)(PO)/C (0≤x≤0.04) cathode material with Na vacancies is successfully synthesized via a scalable preparation route. Introducing positively charged substitutional point defects and charged vacancies through doping La not only broadens the Na transport channels but also reduces lattice stress and stabilizes the crystal bulk structure during long-term cycling for La as pillars. Additionally, high valence La doping enhances the effective charge carrier concentration and improves material conductivity. Consequently, the kinetic performance of Na migration is significantly enhanced. The optimal NaLa□Fe(PO)(PO)/C (NFPP/C-La3) exhibits the best electrochemical performance. The synthesized NFPP/C-La3 exhibits excellent rate performance (99.45 mAh g at 20 C) and long-term cycle stability (92.36% of capacity retention over 1000 cycles at 10 C). These results provide the importance and prospect of the high valence ion doping for NFPP/C with high rate stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202412260 | DOI Listing |
Proton insertion mechanism with fast reaction kinetics is attracting more and more attention for high-rate and durable aqueous Zn─MnO batteries. However, hydrated Zn insertion reaction accompanied with Jahn-Teller effect and Mn disproportionation generally leads to sluggish rate capability and irreversible structure transformation. Here, carboxyl-carbon nanotubes supported α-MnO nanoarrays (C─MnO) cathode is successfully fabricated by a convent grinding process for high-performance Zn batteries.
View Article and Find Full Text PDFSmall
March 2025
Xi'an Engineering Research Center of Environmental Nanocomposites, Shaanxi University of Science and Technology & Xi'an Frontier Materials Technology Co., LTD, Xi'an, 710116, China.
The crystalline CoP@ amorphous WP core-shell nanowire arrays are oriented grown on the Ni foam (CoP@WP/NF). The amorphous WP shell provides more active sites, and the interface charge coupling accelerates the kinetic of the catalytic reaction, making the CoP@WP/NF catalysts excellent activity. In acidic, only 13 and 97 mV overpotentials are needed to reach 10 mA cm and 100 mA cm, respectively, which are the lowest overpotentials among all reported Transition metal phosphide (TMP) catalysts, of course, much lower than that of the Pt/C catalyst (31 mV at 10 mA cm, 120 mV at 100 mA cm).
View Article and Find Full Text PDFSmall
March 2025
College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
The sluggish reaction kinetics and formidable shuttle effect of soluble lithium polysulfides (LiPSs) are thorny problems for the future industrialization of lithium-sulfur (Li-S) batteries. Therefore, exploring efficient electrocatalysts to capture LiPSs and accelerate their conversion is highly desirable yet tremendously challenging. Herein, a high-efficiency Bi/BiO/VMoN@rGO electrocatalyst with multifunctional active sites and multilevel heterointerfaces is elaborately designed for Li-S batteries.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2025
Central South University, School of Metallurgy and Enviroment, No. 932, Lushan Road,, Changsha city, Hunan Province, 410083, Changsha, CHINA.
Activated by the Li-O-Li configuration with nonbonding O2p state (lO2p), anionic redox reaction (ARR) in Li-rich layered oxides (LLOs) contributes to additional capacity but exhibits significant irreversibility, leading to severe surface oxygen loss. Herein, surface nonbonding oxygen state (SNBOS) is regulated by the integrated surface structure engineering to suppress surface oxygen loss and enhance the reversibility of ARR. On the outermost layer, the conversion of layered structure into a LiLaO2 layer and spinel phase structure eliminates lO2p, thereby preventing the activation of ARR and suppressing side reaction between electrolyte and oxidized oxygen ions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2025
Sun Yat-Sen University, School of Materials Science and Engineering, CHINA.
Reversable zinc-air battery (ZAB) is a promising alternative for sustainable fuel cell, but the performance is impeded by the sluggish oxygen redox kinetics owing to the suboptimal adsorption and desorption of oxygen intermediates. Here, hetero-TACs uniquely incorporate an electron regulatory role beyond the primary and secondary active sites found in dual-atom catalysts. In-situ XAFS and Raman spectroscopy elucidate Fe in FCN-TM/NC functions as the main active site, leveraging long-range electron coupling from neighbouring Co and Ni to boost catalytic efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!