Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Amid rising global energy demand and worsening environmental pollution, there is an urgent need for efficient energy storage and conversion technologies. Oxygen electrocatalytic reactions, specifically the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are critical processes in these technologies. Low-dimensional carbon nanomaterials, including zero-dimensional carbon dots, one-dimensional carbon nanotubes, and two-dimensional graphene, demonstrate substantial potential in electrocatalysis due to their unique physical and chemical properties. On the one hand, these low-dimensional carbon materials feature distinct geometric structures that enable the customization of highly active sites for oxygen electrocatalysis. On the other hand, the sp hybridization present in these materials contributes to the existence of π electrons, which enhances conductivity and facilitates catalytic activity and stability. This article reviews recent advancements in the development of efficient catalysts for oxygen electrocatalysis based on low-dimensional carbon nanomaterials, focusing on their characteristics, synthesis methods, electrocatalytic performance, and applications in energy conversion devices. Additionally, we address the current challenges faced by these nanomaterials and outline future research directions to expedite their practical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858436 | PMC |
http://dx.doi.org/10.3390/nano15040254 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!