Obesity is a multifactorial disease with detrimental effects on health and quality of life; unregulated satiety plays a crucial role in food intake and obesity development. Naringenin (NAR) has shown beneficial effects on lipid and carbohydrate metabolism, although its impact on adiposity and satiety remains unclear. This study reports a Western diet (WD)-induced obesity model in rats, wherein 100 mg/kg of NAR was administered as an anti-obesity agent for 8 weeks; oxidative stress, lipid profile, and satiety biomarkers were then studied, as well as in silico interaction between NAR and cholecystokinin (CCK) and ghrelin receptors. NAR supplementation resulted in a significant decrease in retroperitoneal adipose tissue and liver weight, as compared to the untreated WD group ( < 0.05), potentially associated with a decreased feed efficiency. NAR also inhibited the development of dyslipidemia, particularly by reducing serum triglycerides ( < 0.05). NAR supplementation increased CCK serum levels in the basal diet group, an effect that was abolished by the WD ( < 0.05); likewise, no changes were determined on ghrelin ( > 0.05). In silico data shows that NAR is capable of interacting with the CCK and ghrelin receptors, which suggests a potential for it to modulate hunger/satiety signaling by interacting with them. We conclude that NAR has anti-obesogenic effects and may regulate CCK serum levels, although further research is still needed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11857789 | PMC |
http://dx.doi.org/10.3390/metabo15020109 | DOI Listing |
Background: Cancer cells display oxidative metabolic dysregulation to fulfill their bioenergy requirements. Specifically, efforts were made to regulate the metabolite succinate and its negative effects as an inducer for neoplasm invasion and metastasis.
Methods: Binding affinity of naringenin (NAR) to mitochondria complex II (CΙΙ) subunits, sirtuin3 (SIRT3), tumor necrosis factor associate protein 1(TRAP1), and succinate receptor (SUCNR1) was studied by molecular docking.
Nucleic Acids Res
February 2025
Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States.
Poly(A)-binding protein (Pab1 in yeast) is involved in mRNA decay and translation initiation, but its molecular functions are incompletely understood. We found that auxin-induced degradation of Pab1 reduced bulk mRNA and polysome abundance in WT but not in a mutant lacking the catalytic subunit of decapping enzyme (Dcp2), suggesting that enhanced decapping/degradation is a major driver of reduced translation at limiting Pab1. An increased median poly(A) tail length conferred by Pab1 depletion was likewise not observed in the dcp2Δ mutant, suggesting that mRNA isoforms with shorter tails are preferentially decapped/degraded at limiting Pab1.
View Article and Find Full Text PDFNucleic Acids Res
February 2025
Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, E-08028 Barcelona, Spain.
By combining in silico, biophysical, and in vitro experiments, we decipher the topology, physical, and potential biological properties of hybrid-parallel nucleic acids triplexes, an elusive structure at the basis of life. We found that hybrid triplex topology follows a stability order: r(Py)-d(Pu)·r(Py) > r(Py)-d(Pu)·d(Py) > d(Py)-d(Pu)·d(Py) > d(Py)-d(Pu)·r(Py). The r(Py)-d(Pu)·d(Py) triplex is expected to be preferred in the cell as it avoids the need to open the duplex reducing the torsional stress required for triplex formation in the r(Py)-d(Pu)·r(Py) topology.
View Article and Find Full Text PDFNucleic Acids Res
February 2025
Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States.
Synthetic RNA devices are engineered to control gene expression and offer great potential in both biotechnology and clinical applications. Here, we present multidisciplinary structural and biochemical data for a tetracycline (Tc)-responsive RNA device (D43) in both ligand-free and bound states, providing a structure-dynamical basis for signal transmission. Activation of self-cleavage is achieved via ligand-induced conformational and dynamical changes that stabilize the elongated bridging helix harboring the communication module, which drives proper coordination of the catalytic residues.
View Article and Find Full Text PDFNucleic Acids Res
February 2025
Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 46 rue d'Ulm, 75005 Paris, France.
Upf1 RNA helicase is a pivotal factor in the conserved nonsense-mediated mRNA decay (NMD) process. Upf1 is responsible for coordinating the recognition of premature termination codons (PTCs) in a translation-dependent manner and subsequently triggering mRNA degradation. Multiple factors assist Upf1 during these two consecutive steps.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!