Biomimetic nanoassemblies derived from natural products are considered promising nanomaterials due to their self-assembling ability and their favorable interactions with biological molecules leading to their numerous applications as therapeutic agents or as molecular probes. In this work, we have created peptide nanoconjugates of two natural products, β-Boswellic acid (BA) and β-glycyrrhetinic acid (GH). Both BA and GH are known for their medicinal value, including their role as strong antioxidants, anti-inflammatory, neuroprotective and as anti-tumor agents. To enhance the bioavailability of these molecules, they were functionalized with three short peptides (YYIVS, MPDAHL and GSGGL) to create six conjugates with amphiphilic structures capable of facile self-assembly. The peptides were also derived from natural sources and have been known to display antioxidant activity. Depending upon the conjugate, nanofibers, nanovesicles or a mixture of both were formed upon self-assembly. The binding interactions of the nanoconjugates with α-Synuclein, a protein implicated in Parkinson's disease (PD) was examined through in silico studies and FTIR, circular dichroism and imaging studies. Our results indicated that the nanoassemblies interacted with alpha-synuclein fibrils efficaciously. Furthermore, the nanoassemblies were found to demonstrate high viability in the presence of microglial cells, and were found to enhance the uptake and interactions of α-Synuclein with microglial cells. The nanoconjugates designed in this work may be potentially utilized as vectors for peptide-based drug delivery or for other therapeutic applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852371 | PMC |
http://dx.doi.org/10.3390/biomimetics10020082 | DOI Listing |
FASEB J
March 2025
Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
Neuron-derived clone 77 (Nur77), a member of the orphan nuclear receptor family, is expressed and activated rapidly in response to diverse physiological and pathological stimuli. It exerts complex biological functions, including roles in the nervous system, genome integrity, cell differentiation, homeostasis, oxidative stress, autophagy, aging, and infection. Recent studies suggest that Nur77 agonists alleviate symptoms of neurodegenerative diseases, highlighting its potential as a therapeutic target in such conditions.
View Article and Find Full Text PDFSmall
March 2025
School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China.
The utilization of plant-derived exosome-like nanovesicles (ELNs) as nanocarriers for oral delivery of bioactives has garnered significant attention. However, their distinctive lipid membrane composition may result in elevated membrane permeability within the gastrointestinal environment, leading to the leakage of carried bioactives. Inspired by the concept of projectile design, Tartary buckwheat-derived ELNs (TB-ELNs) based dual-carriers are fabricated by loading chlorogenic acid (CGA) into the cores and bonding selenium nanoparticles (SeNPs) to the lipid membrane.
View Article and Find Full Text PDFSmall
March 2025
Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
Using small molecules to integrate multifunctional surfaces within a nanopore is an effective way to endow smart responsibilities of nanofluidic diodes. However, the complex synthesis of the small molecules hinders their further application in achieving multifunctional surfaces. Here, a simple and versatile design concept is reported for fabricating bioinspired integrated nanofluidic diodes with adjustable surface chemistry by confining a spirocyclic fluorescein derivative, 6-aminofluorescein (6-AF), within an asymmetric track-etched nanopore.
View Article and Find Full Text PDFSmall Methods
March 2025
School of Materials and Energy, Lanzhou University, Lanzhou, 730000, P. R. China.
Solid polymer electrolytes (SPEs) have garnered significant attention from both academic and industrial communities due to their high safety feature and high energy density in combination with lithium(Li) metal anode. Nevertheless, their practical applications remain constrained by the relatively low room-temperature ionic conductivity and interface issues. Anion-derived cation-anion aggregates (AGGs), derived from high-concentration liquid electrolytes, promote a stable solid-electrolyte interphase layer, which have gradually propelled their application in SPEs.
View Article and Find Full Text PDFAdv Healthc Mater
March 2025
Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
Intervertebral disc degeneration (IVDD) is a major cause of low back pain, where oxidative stress and mitochondrial dysfunction are key contributors. Additionally, ferroptosis, an iron-dependent form of cell death, is identified as a critical mechanism in IVDD pathogenesis. Herein, the therapeutic potential of gallic acid (GA)-derived PGA-Cu nanoparticles, enhanced with functional octapeptide (Cys-Lys-His-Gly-d-Arg-d-Tyr-Lys-Phe, SS08) to build the mitochondria-targeted nanoparticles (PGA-Cu@SS08), and embedded within a hydrogel matrix to form a nanocomposite hydrogel, is explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!