Lung cancer remains the leading cause of cancer-related deaths worldwide, with non-small cell lung carcinomas (NSCLCs) comprising the majority of cases. Among the common driver mutations, KRAS plays a critical role in guiding treatment strategies. This study evaluates the expression of programmed death-ligand 1 (PD-L1) and hypoxia-inducible factor 1-alpha (HIF-1α) in -mutant NSCLCs and investigates their associations with clinicopathological findings. A total of 85 cases with mutations were analyzed. Immunohistochemical staining for HIF-1α and PD-L1 was performed, and their relationships with mutation status and prognostic variables were assessed. A significant correlation was identified between HIF-1α expression and PD-L1 expression in tumor cells. While the G12C mutation was not significantly associated with HIF-1α expression in tumor cells, it demonstrated a notable relationship with HIF-1α expression in the tumor microenvironment and PD-L1 expression. However, PD-L1 and HIF-1α expression did not significantly influence overall survival outcomes. Expression of PD-L1 was positively correlated with HIF-1α, which may provide evidence for a novel therapy targeting PD-L1 and HIF-1α in NSCLC. Further comprehensive studies are warranted to elucidate the prognostic implications of tumor-microenvironment and mutation interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11854292 | PMC |
http://dx.doi.org/10.3390/cimb47020121 | DOI Listing |
Environ Pollut
June 2024
Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles, 61-B-5000, Namur, Belgium.
The chorion is the first protective barrier set to prevent numerous pollutants from damaging the developing embryo. However, depending on their size, some nanoplastics (NPs) can pass through this barrier and reach the embryo, while all microplastics (MPs) remain on the outside. This study brings a straight approach to compare MPs and NPs, and assess their direct and indirect effects on zebrafish embryos and larvae.
View Article and Find Full Text PDFSci Rep
October 2020
College of Fisheries, National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, 430070, China.
Hypoxia-inducible factor 1 (HIF-1) functions as a master regulator of the cellular response to hypoxic stress. Two HIF-1α paralogs, HIF-1αA and HIF-1αB, were generated in euteleosts by the specific, third round of genome duplication, but one paralog was later lost in most families with the exception of cyprinid fish. How these duplicates function in mitochondrial regulation and whether their preservation contributes to the hypoxia tolerance demonstrated by cyprinid fish in freshwater environments is not clear.
View Article and Find Full Text PDFBiol Lett
July 2020
Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON Canada, K1N 6N5.
Blood
March 2018
Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
During development, hematopoietic stem cells (HSCs) derive from specialized endothelial cells (ECs) called hemogenic endothelium (HE) via a process called endothelial-to-hematopoietic transition (EHT). Hypoxia-inducible factor-1α (HIF-1α) has been reported to positively modulate EHT in vivo, but current data indicate the existence of other regulators of this process. Here we show that in zebrafish, Hif-2α also positively modulates HSC formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!