Various stressors such as ionizing radiation (IR), chemotherapeutic agents, oxidative stress, and inflammatory responses can trigger the stress-induced premature senescence (SIPS) of cells in the bone microenvironment, including osteocytes. However, little is known about the mechanisms underlying the senescent cellular regulation of the differentiation potential and bone homeostasis. Here, we report a secretory change in senescent osteocytes activated by IR, its subsequent impact on osteogenic and osteoclastic differentiation, and the inflammatory cascade response. It was observed that osteocytes exhibited altered biological function, persistent and incomplete DNA damage repair, and characteristic senescence phenotypes after exposure to IR in vitro. Meanwhile, a concomitant increase in the CC chemokine ligand 3 (CCL3), a key component of the senescence-associated secretory phenotype (SASP), was observed in the IR-induced senescent osteocytes, which could further downregulate the osteogenic differentiation and enhance the osteoclastic differentiation in cell supernatant co-culture experiments. Notably, the enhancement of the PI3K/Akt/NF-κB signaling pathway in IR-induced senescent osteocytes appears to be an essential driver of the imbalance between the osteogenic and osteoclastic differentiation potentials. Taken together, these data suggest a novel role of CCL3 in IR-induced bone homeostatic imbalance through SASP cascade secretion, mediated by the PI3K/Akt/NF-κB signaling pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853822 | PMC |
http://dx.doi.org/10.3390/cells14040249 | DOI Listing |
Cell Mol Life Sci
March 2025
Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China.
The bone marrow microenvironment contains heterogeneous stromal cells, which are critical for bone remodeling and provide essential supportive roles for hematopoietic functions. Although the diversity of PDGFRαβ mesenchymal stromal/stem cells (MSCs) get consensus, the osteo-lineage cells (OLCs) that constitute the developmental trajectory of osteoblasts are largely remain unclear. Here, we construct a comprehensive atlas of stromal cell via performing integrative single cell analyses for 77 samples from 14 datasets.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2024
Osteocyte-lacunar bone structures are a discerning marker for bone pathophysiology, given their geometric alterations observed during aging and diseases. Deep Learning (DL) image analysis has showcased the potential to comprehend bone health associated with their mechanisms. However, DL examination requires labeled and multimodal datasets, which is arduous with high-dimensional images.
View Article and Find Full Text PDFSmall
March 2025
Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30307, USA.
Aging-related bone loss significantly impacts the growing elderly population globally, leading to debilitating conditions such as osteoporosis. Senescent osteocytes play a crucial role in the aging process of bone. This longitudinal study examines the impact of continuous local and paracrine exposure to senescence-associated secretory phenotype (SASP) factors on biophysical and biomolecular markers in osteocytes.
View Article and Find Full Text PDFAntioxidants (Basel)
February 2025
Physical Education Department, Civil Aviation Flight University of China, Guanghan 618307, China.
Aging is associated with detrimental bone loss, often leading to fragility fractures, which may be driven by oxidative stress. In this study, the outcomes of comparing the differences among young, adult and aged C57BL/6J mice found that the trabecular bone volume was significantly lower in the aged mice compared to young mice, and the bone characteristics were significantly correlated with the oxidative status. To counteract the adverse effects of aging, methyl sulfonyl methane (MSM), a stable metabolite of dimethyl sulfoxide, was used to supplement the drinking water (400 mg/kg/day) of the aged mice (73 weeks old) for 8 weeks.
View Article and Find Full Text PDFCells
February 2025
Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, China.
Various stressors such as ionizing radiation (IR), chemotherapeutic agents, oxidative stress, and inflammatory responses can trigger the stress-induced premature senescence (SIPS) of cells in the bone microenvironment, including osteocytes. However, little is known about the mechanisms underlying the senescent cellular regulation of the differentiation potential and bone homeostasis. Here, we report a secretory change in senescent osteocytes activated by IR, its subsequent impact on osteogenic and osteoclastic differentiation, and the inflammatory cascade response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!