Glycerohydrogels based on silicon glycerolate, chitosan (CS) and polyvinyl alcohol (PVA) are widely studied for use in biomedical applications. In line with the general trend of replacing synthetic polymers with natural ones in such compositions, it would be of interest to replace PVA with the polysaccharide glucomannan (GM), as well as to introduce functional additives to impart the desired properties, including gelation time, to the final hydrogel. In this work, a comprehensive study of the preparation conditions and properties of glycerohydrogels based on silicon tetraglycerolate, chitosan hydrochloride (CS·HCl) and GM was carried out. Viscometry was used to assess the conformational state of CS·HCl and GM macromolecules, and their associates in solution before gelation. Gelation was studied using the vessel inversion method. The mucoadhesive and the dermoadhesive properties of the glycerohydrogels obtained were assessed using the tearing off method from the model substrates simulating mucous and dermal tissues. The conformational state of the individual polymers and their mixed associates in solution before gelation was estimated; the intrinsic viscosity and the hydrodynamic radius of the macromolecular coils were calculated. The influence of various factors (addition of ε-aminocaproic and hydrochloric acids, sodium chloride, hydroxide and tetraborate to vary the acidity and ionic strength of the medium, as well as temperature) and the molecular weight of chitosan on the gelation time was studied. The gelation time achieved was less than 2 min, which is promising in practical terms, i.e., for creating liquid plasters. Our best samples are not inferior to the commercial preparation "Metrogyl Denta" in terms of tearing force during mucoadhesion and dermoadhesion at short gelation times. Thus, the glycerohydrogels synthesized by us and based on silicon tetraglycerolate, CS·HCl and GM could find usage in new biopharmaceutical and biomedical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11854711 | PMC |
http://dx.doi.org/10.3390/gels11020103 | DOI Listing |
Nano Lett
March 2025
State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China.
A programmable 2H-MoTe floating-gate field-effect transistor (FGFET)-based complementary metal oxide semiconductor (CMOS) array has been fabricated on the grown substrate. Coplanar grown metallic 1T'-MoTe serves as the source and drain electrodes. The conductive type of the 2H-MoTe channel is manipulated by a top-gate engineering method.
View Article and Find Full Text PDFEur J Dent
March 2025
Department of Prosthodontics, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
Objective: Despite the emergence of numerous three-dimensional (3D) printed provisional resin, there are no conclusive guidelines for repairing them. This study aims to investigate the effects of different repair materials and surface treatments on the shear bond strength of 3D-printed provisional resin.
Materials And Methods: A total of 180 3D-printed resin specimens underwent six surface treatments: no surface treatment (control), silicon carbide paper (SP), sandblasting with aluminum oxide (SB), SP followed by SB (SP + SB), SP with bonding agent (SP + BD), and SB with bonding agent (SB + BD).
Biomed Phys Eng Express
March 2025
Department of Physics and Technology, University of Bergen, Allégaten 55, Bergen, Hordaland, 5007, NORWAY.
Monolithic active pixel sensors are used for charged particle tracking in many applications, from medical physics to astrophysics. The Bergen pCT collaboration designed a sampling calorimeter for proton computed tomography, based entirely on the ALICE PIxel DEtector (ALPIDE). The same telescope can be used for in-situ range verification in particle therapy.
View Article and Find Full Text PDFLangmuir
March 2025
School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia.
The backgrinding of silicon (Si) wafers has resulted in a loss of ∼70% of valuable Si materials. Consequently, an effluent known as diluted backgrinding wastewater (DBGW) is generated, containing nanosized silicon/silica colloids. Here, we discussed the challenges associated with the effective separation of Si-based waste from the DBGW based upon two perspectives, namely, a nanosized effect and a colloidal stability effect.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
Department of Electronic Engineering, Hanyang University, Seoul 04763, South Korea.
While amorphous indium gallium zinc oxide (α-IGZO) thin film transistors (TFTs) are practical alternatives to silicon-based TFTs, their field-effect mobility (∼50 cm/(V s), depending on deposition conditions) remains insufficient to meet the growing demands of high-resolution active-matrix organic light-emitting diode (AMOLED) displays. The need for high-performance oxide TFTs with mobility ≥100 cm/(V s) has become critical to meet the evolving display industry's requirements. This study explored the development of high-mobility hexagonal homologous compound (HC) indium zinc tin oxide (IZTO) TFTs as an alternative to α-IGZO TFTs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!