This study introduces fluorescent polymer gel microspheres (FPMs) as a novel approach to enhance conformance control in oil reservoirs. Designed to address the challenges of high-permeability zones, FPMs were synthesized via inverse suspension polymerization, incorporating 2-acrylamido-2-methylpropane sulfonic acid (AMPS) to improve thermal stability and swelling and fluorescein to enable fluorescence. Characterization using FT-IR, SEM, fluorescence spectroscopy, and thermal analysis revealed that FPMs swell significantly in brine, with diameters increasing from 46 μm to 210 μm, and maintain thermal stability up to 110 °C. These advanced properties make FPMs highly effective in reducing permeability and facilitating real-time tracking, offering a promising solution for improved oil recovery and efficient reservoir management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11854271 | PMC |
http://dx.doi.org/10.3390/gels11020085 | DOI Listing |
Chemistry
March 2025
Shanghai Normal University, College of Chemistry and Materials Science, 200234, Shanghai, CHINA.
Photo-stimulated Polymers have garnered significant attention for their potential applications ranging from optical memory to sensing. Herein, by changing coordination metal and the position of nitrogen atom in pyridine-based photo-stimulated ligand, we successfully synthesised a novel photo-stimulated copper-based MOF (Cu-MOF) using 9,10-bis(di(pyridine-3-yl)methylene)-9,10-dihydroanthracene as the photo-stimulated ligand. Structural analysis revealed a 3D porous architecture, offering a distinct advantage over previously reported 1D coordination polymer using similar photo-stimulated ligand.
View Article and Find Full Text PDFMolecules
March 2025
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, Wuxi 214122, China.
Photoaging is common and represents one of the primary pathways for hair damage in daily life. Hydrolyzed keratin, which is usually derived from wool and consists of a series of polypeptide molecules, has been investigated as a UV damage prevention ingredient for hair care. Scanning Electron Microscopy (SEM) and fluorescent penetration experiments verified that hydrolyzed keratin can deposit on the hair cuticles to form a film and partly penetrate into the hair cortex.
View Article and Find Full Text PDFMolecules
February 2025
College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
Poly(2-oxazoline) (POx), a typical thermoresponsive polymer with good biocompatibility, was conjugated with environment-sensitive tetraphenylenethene (TPE) and hydroxyphenylbenzoxazole (HBO) to achieve unique thermometer readings. Through phase transition induced by temperature, the thermometers can measure temperature in biologic range with ratiometric fluorescence response, ultrahigh sensitivity and good reversibility. Moreover, the thermometer can be used to measure the change in temperature with large fluorescence difference in living cells.
View Article and Find Full Text PDFPolymers (Basel)
March 2025
Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
Stimuli-responsive polymeric nanostructures are compelling vectors for a wide range of application opportunities. The objective we sought was to broaden the array of self-assembling amphiphilic copolymers with stimuli-responsive characteristics by introducing a hydrophilic tunable monomer, (2-dimethylamino)ethyl methacrylate (DMAEMA), together with a hydrophilic one, lauryl methacrylate (LMA), within linear and branched copolymer topologies. Size exclusion chromatography was used to evaluate the resultant linear and hyperbranched copolymers' molecular weight and dispersity, and FT-IR and H-NMR spectroscopy techniques were used to delineate their chemical structure.
View Article and Find Full Text PDFPolymers (Basel)
February 2025
Instituto de Engenharia Mecânica (IDMEC), Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
Waste stone sludge generated by the extractive industry has traditionally posed significant disposal challenges. This study redefines stone sludge as a valuable raw material by incorporating it into polylactic acid (PLA) to create sustainable composite materials. Pellets and filaments composed of up to 50% by weight of limestone powder and PLA were successfully produced using melt blending in a twin-screw extruder.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!