This paper presents a case study demonstrating the application of model-informed drug development (MIDD) and early modeling integration in the development of a sustained release (SR) formulation of flucytosine for cryptococcal meningoencephalitis (CM) in HIV-infected patients. The study aimed to showcase the value of physiologically based pharmacokinetic (PBPK) modeling and physiologically based biopharmaceutics modeling (PBBM) in guiding decisions and optimizing therapeutic strategies throughout drug development. The MIDD strategy started with a PBPK model based on limited literature data, iteratively refined informed by data from two Phase 1 clinical studies with various flucytosine formulations under different prandial conditions in healthy participants, enhancing model reliability. The PBPK/PBBM model played a substantial role in guiding SR prototype formulation design, dose selection for studies in healthy participants, and dosage determination for an upcoming Phase 2 clinical study in patients, with a focus on low-weight patients. The flexibility of MIDD allowed quick assessments of ancillary questions during the program. Ad hoc simulations evaluated strategies such as adding a loading dose for SR treatment and assessing drug exposure in unconscious patients, contributing to optimized therapeutic approaches. In conclusion, this case study emphasizes the benefits of MIDD and early model integration in drug development. PBPK/PBBM modeling facilitated informed decisions, leading to successful design and dosing of an SR flucytosine formulation for CM treatment. Continuous knowledge integration within MIDD ensured model adaptability and reliability, demonstrating its value in addressing evolving challenges and optimizing therapeutic outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/psp4.13309 | DOI Listing |
Mol Pharm
March 2025
Merck & Co., Inc., Rahway, New Jersey 07065, United States.
This is the fourth paper in a series describing an inhalation biopharmaceutics classification system (iBCS), an initiative supported by the Product Quality Research Institute. The paper examines the application of the inhalation Biopharmaceutics Classification System (iBCS) through the drug discovery, development, and postapproval phases for orally inhaled drug products (OIDP) and for the development of generic OIDPs. We consider the implication of the iBCS class in terms of product performance and identify the practical gaps that must be filled to enable the classification system to be adopted into day-to-day practice.
View Article and Find Full Text PDFBone Joint Res
March 2025
Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China.
Aims: Osteoarthritis (OA) is a widespread chronic degenerative joint disease with an increasing global impact. The pathogenesis of OA involves complex interactions between genetic and environmental factors. Despite this, the specific genetic mechanisms underlying OA remain only partially understood, hindering the development of targeted therapeutic strategies.
View Article and Find Full Text PDFJ Biomol Struct Dyn
March 2025
Applied Organic Chemistry Department, National Research Center, Dokki, Egypt.
The discovery of novel, selective inhibitors targeting CDK2 and PIM1 kinases, which regulate cell survival, proliferation, and treatment resistance, is crucial for advancing cancer therapy. This study reports the design, synthesis, and biological evaluation of three novel pyrazolo[3,4-]pyridine derivatives (), confirmed spectral analyses. These compounds were assessed for anti-cancer activity against breast, colon, liver, and cervical cancers using the MTT assay.
View Article and Find Full Text PDFSmall Methods
March 2025
Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, CAS, Shenzhen, 518 055, China.
Micro/nano manipulation of single nanowire has emerged as a popular direction of study in the field of nanotechnology, with promising applications in cutting-edge technologies such as device manufacturing, medical treatment, and nanorobotics. The synthesis of nanowires with controllable length and diameter makes them meet various micro/nano manipulation demands. As manipulation techniques have advanced, including the use of optical tweezers, electric and magnetic fields, mechanical control, and several more control methods, they have demonstrated unique advantages in different application fields.
View Article and Find Full Text PDFSmall
March 2025
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China.
Nanovaccines, as a new generation of vaccines, have garnered significant interest due to their exceptional potential in enhancing disease prevention and treatment. Their unique features, such as high stability, antigens protection, prolonged retention, and targeted delivery to lymph nodes, immune cells, and tumors, set them apart as promising candidates in the field of immunotherapy. Polymers, with their superior degradability, capacity to mimic pathogen characteristics, and surface functionality that facilitates modifications, serve as ideal carriers for vaccine components.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!