Introduction: The increasing global demand for starch has created an urgent need to identify more efficient and sustainable production methods. However, traditional starch sources, such as crop-based options, experience significant bottlenecks due to limitations in land use, water consumption, and the impacts of climate change. Therefore, there is a pressing need to explore and develop new sources of starch.
Methods: We develop a novel duckweed cultivation technology that combines nutrients limitation and CO supplementation to achieve very high starch content. In this study, we integrated whole-genome sequencing, epigenomics, transcriptomics, enzyme activity, and composition variation to elucidate the mechanisms of efficient starch accumulation in duckweed in terms of starch accumulation and carbon partitioning, regulation of the expression of genes in the starch metabolic pathway, and sucrose biosynthesis and transportation.
Results And Discussion: Although exhibits dramatic gene family contraction, its starch content and productivity reached 72.2% (dry basis) and 10.4 g m d, respectively, in 10 days, equivalent to a yield of 38.0 t ha y, under nutrient limitation treatment with elevated CO levels. We also examined the mechanism of high starch accumulation in duckweed. This phenomenon is associated with the regulation of DNA methylation and transcription factors as well as the significantly upregulated transcription levels and the increased activities of key enzymes involved in starch biosynthesis. Moreover, while nitrogen redistribution was increased, sucrose biosynthesis and transportation and lignocellulose biosynthesis were reduced. These alterations led to a reduction in lignocellulose and protein contents and ultimately an increase in the accumulation of starch in the chloroplasts.
Conclusion: This work demonstrates the potential of duckweed as a highly efficient starch producer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11847889 | PMC |
http://dx.doi.org/10.3389/fpls.2025.1531849 | DOI Listing |
Physiol Mol Biol Plants
February 2025
Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Russia.
Unlabelled: Drought is a natural disaster that exerts considerable adverse impacts on the agricultural sector. This study aimed to investigate the cytokinin-mediated carbohydrate accumulation in the aerial parts of the plant and the roots in four-month-old drought-stressed tall fescue ( Schreb.) plants.
View Article and Find Full Text PDFBMC Genomics
March 2025
College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
Water spinach (Ipomoea aquatica Forsk.) is an important leaf vegetable affected by salt stress, however, little is known about its salt adaption mechanism. Here, we integrated physiomics, ionomics, transcriptomics, and metabolomics to analyze the root adaptation response of two water spinach varieties, BG (salt-tolerant) and MF (salt-sensitive), at 150 mM NaCl.
View Article and Find Full Text PDFPlant Physiol Biochem
March 2025
Graduate School of Life Sciences, Toyo University, 48-1 Oka, Asaka, Saitama, 351-8510, Japan. Electronic address:
An indole-3-acetic acid (IAA)-glucose hydrolase, THOUSAND-GRAIN WEIGHT 6 (TGW6), negatively regulates rice grain weight and starch accumulation before heading. A 1-bp deletion in tgw6 results in loss of function and enhances grain size and yield. Thus, TGW6 has been a target for breeding strains with increased rice yield.
View Article and Find Full Text PDFFront Plant Sci
February 2025
University Centre for Research and Development, Chandigarh University, Mohali, India.
Cassava is a crucial source of daily calorie intake for millions of people in sub-Saharan Africa (SSA) but has an inferior protein content. Despite numerous attempts utilizing both traditional and biotechnological methods, efforts to address protein deficiency in cassava have yet to meet with much success. We aim to leverage modern biotechnologies to enhance cassava's nutritional value by creating bioengineered cassava cultivars with increased protein and starch content.
View Article and Find Full Text PDFPlant Sci
March 2025
Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Viterbo, Italy. Electronic address:
High-amylose wheat has garnered significant attention from the food industry for its potential to produce low-glycaemic food products. It is well-established that there is a direct correlation between the amylose content in flour and the amount of resistant starch (RS) in foods. Recently, some research initiatives have successfully produced high-amylose durum wheat by targeting key enzymes in the amylopectin biosynthesis pathway, though this has resulted in a reduction in seed weight.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!