Silver nanostructures are highly valued in nanophotonic devices due to their appealing plasmonic properties and affordability relative to gold. Yet, fabricating high-quality, monocrystalline silver nanostructures, with full control over the shape, is challenging. A mild, liquid-phase method for the epitaxial welding of adjacent monocrystalline silver nanocubes in reductant-free conditions is introduced to prevent the formation of detrimental nuclei on the surface that can degrade the nanostructures' optical qualities. The mechanism is thoroughly investigated and it is found that the nanocubes themselves can act as reducing agents, promoting growth preferentially into the gap as a result of electrostatic interactions. By controlling experimental parameters such as temperature, pH, and the introduction of capping agents, a balance between nanocube epitaxy and shape retention is achieved. Finally, by applying this procedure to nanoparticle assembled in predefined meta-atoms, the feasibility of creating intricate silver nanostructures, that are monocrystalline as verified by transmission electron microscopy (TEM), is demonstrated. This advancement paves the way for bottom-up fabrication of optical metasurfaces that can be swiftly integrated in devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202401304 | DOI Listing |
Anal Chim Acta
May 2025
Department of Nephrology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, PR China. Electronic address:
The sensitive, efficient, and simultaneous assay of creatinine and urea in different body fluid is crucial for the daily detection and treatment of chronic kidney disease. Here, we exploited a versatile composite surface enhanced Raman scattering (SERS) substrate of polydimethylsiloxane (PDMS)-flower-like ZIF-67@Ag nanoparticles (NPs) based on simple in-situ growth and ion sputtering strategies. The plasmonic Ag NPs assembled on the three-dimensional anisotropic ZIF-67 matrix, facilitating numerous resonant electromagnetic "hotspots".
View Article and Find Full Text PDFPLoS One
March 2025
Food Technology and Process Engineering, Oda Bultum University, Chiro, Ethiopia.
This study investigates the synthesis and characterization of Plant-Ag-graphene nanocomposites through a combination of spectroscopic and microscopic techniques, the nanocomposites were formed by catalyzing silver nanoparticles with plant extracts, and the resulting structures were analyzed using advanced instrumentation. In the FTIR analysis, distinctive peaks were observed at 3340 cm⁻1 (O-H stretching), 1740 cm⁻1 (C = O stretching), and 1050 cm⁻1. When compared to silver nanoparticles, the nanocomposites exhibited altered peak intensities, indicating modifications in chemical bonding.
View Article and Find Full Text PDFSovrem Tekhnologii Med
March 2025
DSc, Professor, Department of Biophysics, Faculty of Biology; Lomonosov Moscow State University, 1 Leninskiye Gory, Moscow, 119991, Russia; Professor, Department of Physical Materials; National University of Science and Technology "MISIS", 4 Leninsky Prospect, Moscow, 119049, Russia.
Unlabelled: was to identify differences in the structure of the neuronal process network as well as the composition and functional state of cells by studying the bodies and processes of rat brain neurons and astrocytes obtained from pluripotent stem cells of healthy donors and patients with hereditary Parkinson's disease by using a complex of modern high-precision methods such as Raman microspectroscopy, surface-enhanced Raman microspectroscopy, and scanning ion-conductance microscopy.
Materials And Methods: By using Raman spectroscopy and scanning ion-conductance microscopy, the researchers studied the morphology and state of molecules in rat brain neurons and astrocytes induced from pluripotent stem cells of healthy donors and patients with hereditary Parkinson's disease.
Results: The researchers established that typical bands of Raman and surface-enhanced Raman spectra of neurons and astrocytes allowed studying the distribution and conformation of a series of biological molecules (proteins, lipids, cytochromes) in healthy and unhealthy states.
Int J Nanomedicine
March 2025
University of Lodz, Faculty of Chemistry, Department of Materials Technology and Chemistry, Lodz, 90-236, Poland.
Introduction: In this paper, we discuss the influence of the ligand type present on the surface of silver nanoparticles (AgNPs) on its affinity to the virus surface and its virucidal activity against herpes simplex virus type 2 (HSV-2). We selected four different ligands, which potentially exhibit different affinity to the HSV-2 virus surface and used them for functionalization of AgNPs: i) sodium citrate: ii) tannic acid; iii) 1-mercaptoundecane-1-sulfonate (MUS); iv) and poly(ethylene glycol) (PEG).
Methods: The antiviral activity was performed by in vitro Vero cell culture.
ACS Omega
March 2025
Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, Oeiras 2780-157, Portugal.
A dye-decolorizing peroxidase (DyP)-based electrochemical biosensor for hydrogen peroxide (HO) is developed in miniaturized, disposable, and user-friendly configuration. Wild type and variant DyPs are immobilized on self-assembled monolayer (SAM)-coated and nanostructure-modified screen-printed electrodes (SPEs) to ensure biocompatibility and increase the enzyme loading and hence the biosensor sensitivity. The structure of the enzymes attached to gold and silver nanoparticle (AuNP and AgNP)-modified carbon- and gold-based SPEs (C-SPE and Au-SPE) is monitored by resonance Raman spectroscopy and their electrocatalytic performance toward HO by electrochemistry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!