A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

DCLK1-mediated regulation of invadopodia dynamics and matrix metalloproteinase trafficking drives invasive progression in head and neck squamous cell carcinoma. | LitMetric

Background: HNSCC presents a significant health challenge due to its high mortality resulting from treatment resistance and locoregional invasion into critical structures in the head and neck region. Understanding the invasion mechanisms of HNSCC has the potential to guide targeted therapies, improving patient survival. Previously, we demonstrated the involvement of doublecortin like kinase 1 (DCLK1) in regulating HNSCC cell invasion. Here, we investigated the hypothesis that DCLK1 modulates proteins within invadopodia, specialized subcellular protrusions that secrete matrix metalloproteinases to degrade the ECM.

Methods: We employed tandem mass tag (TMT)-based proteomics to identify the role of DCLK1 in regulating proteins involved in HNSCC invasion and validated the findings using immunoblotting. The Cancer Genome Atlas (TCGA) database was interrogated to correlate DCLK1 expression with tumor stage, grade, and invasion-associated proteins. In vitro invasion was assessed using a Boyden chamber assay, and immunohistochemistry on patient samples determined DCLK1's distribution within tumors. Gelatin invadopodia assay was used to establish DCLK1 localization to invadopodia related gelatin degradation. Super-resolution confocal microscopy demonstrated colocalization of DCLK1 with invadopodia markers and MMP trafficking proteins. ECM degradation by MMPs in HNSCC cells with wild-type and knockdown DCLK1 was evaluated using a dye-quenched tracer, while gel zymography and MMP array identified secreted proteases. Proximity ligation assay (PLA) and co-immunoprecipitation assays were used to confirm interactions between DCLK1, MMP9, KIF16B, and RAB40B.

Results: Proteomic analysis demonstrate DCLK1's role in regulating proteins involved in cytoskeletal and ECM remodeling. Clinically, rising DCLK1 levels correlate with higher histological grade and lymph node metastasis, with heightened expression observed at the leading edge of HNSCC patient tissue. DCLK1 is localized with markers of mature invadopodia including TKS4, TKS5, cortactin, and MT1-MMP. Knockdown of DCLK1 led to reductions in invadopodia numbers and decreased in vitro invasion and ECM degradation. MMP9 colocalizes with DCLK1 within invadopodia structures and its secretion is disrupted by DCLK1 knockdown. Further, PLA and co-immunoprecipitations studies demonstrate DLCK1 complexes with KIF16B and RAB40B enabling trafficking of degradative MMP9 cargo along the invadopodia to degrade local ECM.

Conclusion: This work unveils a novel function of DCLK1 in regulating KIF16B and RAB40B to traffic matrix degrading MMP9 cargo to the distal end of the invadopodia facilitating HNSCC invasion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853957PMC
http://dx.doi.org/10.1186/s12943-025-02264-3DOI Listing

Publication Analysis

Top Keywords

dclk1
14
dclk1 regulating
12
invadopodia
10
head neck
8
regulating proteins
8
proteins involved
8
hnscc invasion
8
vitro invasion
8
dclk1 invadopodia
8
ecm degradation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!