Background: Venom allergen-like proteins (VALs) are abundant in the excretory-secretory products (ESPs) of numerous parasitic helminths and have been extensively studied for over 30 years because of their potential to interact with host systems. Despite substantial research, however, the precise functions of these proteins remain largely unresolved. Schistosomes, parasites of the circulatory system, are no exception, with 29 SmVAL genes identified in the genome of Schistosoma mansoni to date. The eggs of these parasites, as primary pathogenic agents, interact directly with host tissues and release excretory-secretory products that aid their egress from the host. Although SmVALs have been detected in the egg secretome in the past, direct evidence of their secretion and functional interaction with host molecules has never been demonstrated. These findings fuel the ongoing debate as to whether egg-expressed SmVALs interact with the mammalian host or are rather miracidial proteins synthesized within the egg during larval development.

Results: Based on complete revision of the SmVAL family and an associated robust transcriptomic meta-analysis of gene expression across the life cycle, we show that many of SmVAL genes, including 6 newly identified genes, are expressed in the infective larvae-producing stages (eggs and sporocysts). Following localization of two "egg-specific" SmVAL9 and SmVAL29 did not prove active secretion of these molecules into surrounding tissues but were aligned with miracidial structures interfacing with the molluscan host, specifically the larval surface and penetration glands. Finally, we show the complete lack of interactions between candidate SmVAL proteins and an array of 755 human cell receptors via a state-of-the-art SAVEXIS screen.

Conclusions: Overall, we conclude that these "egg" SmVALs are not involved in direct host‒parasite interactions in the mammalian host and are rather proteins employed during intermediate host invasion. Our study revisits and updates the SmVAL gene family, highlighting the limitations of in silico protein function predictions while emphasizing the need for up-to-date datasets and tools together with experimental validation in host-parasite interactions. By uncovering the diversity, expression patterns, and interaction dynamics of SmVALs, we open new avenues for understanding host manipulation and reevaluating orthologous proteins in other helminths.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11854430PMC
http://dx.doi.org/10.1186/s12864-025-11369-4DOI Listing

Publication Analysis

Top Keywords

host
9
venom allergen-like
8
allergen-like proteins
8
excretory-secretory products
8
smval genes
8
mammalian host
8
proteins
7
smval
5
eggs-posed revision
4
revision schistosoma
4

Similar Publications

Multi-omics uncover acute stress vulnerability through gut-hypothalamic communication in ducks.

Br Poult Sci

March 2025

State Key Laboratory for Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.

1. The avian gut hosts a complex and dynamic microbial ecosystem, which is essential for regulating host organ function. However, the relationship between the gut microbiota and the hypothalamic axis in acute stress vulnerability in ducks remains unclear.

View Article and Find Full Text PDF

MoSe/BiSe Heterostructure Immobilized in N-Doped Carbon Nanosheets Assembled Flower-Like Microspheres for High-Rate Sodium Storage.

Small

March 2025

Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.

A key challenge for sodium-ion batteries (SIBs) lies in identifying suitable host materials capable of accommodating large Na ions while addressing sluggish chemical kinetics. The unique interfacial effects of heterogeneous structures have emerged as a critical factor in accelerating charge transfer and enhancing reaction kinetics. Herein, MoSe/BiSe composites integrated with N-doped carbon nanosheets are synthesized, which spontaneously self-assemble into flower-like microspheres (MoSe/BiSe@N-C).

View Article and Find Full Text PDF

Protothecosis in Dogs: A Narrative Review.

J Vet Intern Med

March 2025

Centre for Veterinary Education, Sydney School of Veterinary Science, The University of Sydney, Sydney, Australia.

Protothecosis is a rare and unusual disease that affects both humans and animals, including dogs. The causative agents are unicellular, achlorophyllous, "yeast-like" microalgae of the genus Prototheca (Trebouxiophyceae, Chlorophyta). Although usually saprophytic, Prototheca may, under conditions of immunologic compromise, become pathogenic and even lethal to the host.

View Article and Find Full Text PDF

Protein N-glycosylation influences protein folding, stability, and trafficking, and has prominent functions in cell-cell adhesion and recognition. For the parasite Toxoplasma gondii, N-glycosylation of proteins is crucial for initial adhesion to host cells, parasite motility, and consequently, its ability to invade host cells. However, the glycoproteome of T.

View Article and Find Full Text PDF

Design Strategies of S Molecule Cathodes for Room-Temperature Na-S Batteries.

Nanomaterials (Basel)

February 2025

Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.

Sodium-sulfur batteries have been provided as a highly attractive solution for large-scale energy storage, benefiting from their substantial storage capacity, the abundance of raw materials, and cost-effectiveness. Nevertheless, conventional sodium-sulfur batteries have been the subject of critique due to their high operating temperature and costly maintenance. In contrast, room-temperature sodium-sulfur batteries exhibit significant advantages in these regards.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!