Several alkaloids found in the Zanthoxylum genus have demonstrated significant anticancer activity. However, the antitumor effects of Ethoxychelerythrine (Eth) have not been previously reported. Cell viability, colony formation, apoptosis and cell cycle analysis, intracellular and reactive oxygen species (ROS), mitochondrial membrane potential (MMP) levels of Eth against SW480 cells were evaluated. Subcutaneously transplanted SW480 cells model was used to determine the effect of Eth on tumor growth in vivo. Inflammation levels, angiogenic factors, pathological observations, quantitative reverse-transcription PCR (qRT-PCR), quantitative proteomics, metabolite profiles and western blotting were conducted. It found that Eth significantly inhibited the proliferation of SW480 and HT29 cells in vitro, with stronger inhibitory activity observed against SW480 cells. Therefore, subsequent studies focused on SW480 cells. In vitro, we observed that Eth arrested the cell cycle at the G0/G1 phase, decreased MMP levels, elevated cellular ROS levels, and induced mitochondrial apoptosis. In vitro, Eth significantly inhibited tumor proliferation and metastasis, and regulated the molecule levels of angiogenesis and inflammatory factors in serum, as well as apoptotic protein in tumor tissues. The serum proteomic revealed that the differential proteins were primarily involved in the PI3K/AKT/mTOR pathway, including laminin β1 (Lamb1), and type I collagen (Col1a1). Metabolomics showed that many abnormal levels of metabolites regulated by the PI3K/AKT/mTOR pathway were obviously reversed towards normal levels after Eth intervention. The correlation analysis between the two-omics revealed that different proteins in the PI3K/AKT pathway, particularly lactate dehydrogenase B (LDHB) and glutathione synthetase (GSS), can interact with most of different metabolites. In summary, Eth exerts anti-tumour effects by inhibiting the activation of the PI3K/AKT/mTOR pathway, which in turn activates mitochondrial apoptosis. Eth may be considered in the development of drugs for relieving colon cancer patients in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850888PMC
http://dx.doi.org/10.1038/s41598-025-91251-1DOI Listing

Publication Analysis

Top Keywords

sw480 cells
16
mitochondrial apoptosis
12
pi3k/akt/mtor pathway
12
eth
9
induced mitochondrial
8
cell cycle
8
mmp levels
8
levels eth
8
eth inhibited
8
cells vitro
8

Similar Publications

Colorectal cancer (CRC) is the second deadliest cancer in the Western world. Increased body weight, a diet rich in red meat and alcohol, as well as a sedentary lifestyle, are all involved in sporadic CRC pathogenesis. Since current CRC therapies show several side effects, there is a need to find new and more effective therapeutic approaches, allowing conventional drug dosages and toxicity to be reduced.

View Article and Find Full Text PDF

Metabolic reprogramming is a hallmark of cancer, enabling tumor cells to adapt to and exploit their microenvironment for sustained growth. The liver is a common site of metastasis, but the interactions between tumor cells and hepatocytes remain poorly understood. In the context of liver metastasis, these interactions play a crucial role in promoting tumor survival and progression.

View Article and Find Full Text PDF

Background: Evidence indicated that KIF3C, a member of the kinesin superfamily of motor proteins, exhibits significant upregulation across various cancer types. Consequently, its impact on cancer advancement, including cell proliferation, migration, and invasion, is evident. Nonetheless, the comprehension of KIF3C's expression and role in colorectal cancer (CRC) remains limited.

View Article and Find Full Text PDF

Colorectal cancer is the fourth leading cause of cancer-related deaths worldwide. Capecitabine is a chemotherapeutic agent commonly used for the treatment of colon cancer. To realize local sustained release, promote efficient local intracellular transport, and mitigate the systemic toxic effects of capecitabine, a capecitabine prodrug, capecitabine-poly (p-dioxanone) (Cap-PPDO), was successfully synthesized.

View Article and Find Full Text PDF

Background: To investigate the anticancer effects of 5-Fluorouracil (5-FU), thymoquinone (TQ), and/or coenzyme Q10 (CQ10), alone and combined, in HT29, SW480, and SW620 human colorectal cancer (CRC) cell lines.

Methods: Cell cycle progression and apoptosis were assessed by flow cytometry. Gene and protein expression of molecules involved in apoptosis (BLC2, survivin, BAX, Cytochrome-C, and Caspase-3), cell cycle (CCND1, CCND3, p21, and p27), the PI3K/AKT/mTOR/HIF1α oncogenic pathway, and glycolysis (LDHA, PDH, and PDHK1) were also analysed by quantitative RT-PCR and Western blot.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!