Bioprinting allows for the fabrication of tissue-like constructs by precise architecture and positioning of the bioactive hydrogels with living cells. This study was performed to determine the effect of very low concentrations of alginate (0.1, 0.3, and 0.5% w/v) on bioprinting of bone marrow mesenchymal stem cells (BMSC) in gelatin methacryloyl (GelMA; 5% w/v)/alginate blend. Furthermore, while GelMA was photocrosslinked in all bioprinted constructs, the effect of crosslinking alginate with calcium chloride on the physical and biological characteristics of the constructs was investigated. The inclusion of low-concentration alginate improved the viscosity and printability of the formulation as well as the compressive modulus of the hydrogels, particularly when ionically crosslinked with calcium chloride, compared with the group in that alginate was not crosslinked. However, the stability and degradability of 3D printed scaffolds that were only photocrosslinked were comparable to those that were additionally crosslinked with calcium chloride. Noteworthily, ionic crosslinking of alginate deteriorated the viability of BMSC. Morphology and growth of BMSC were improved by adding a low alginate concentration; however, ionic crosslinking of alginate affected these factors adversely. The findings of this study underscore the significance of carefully evaluating the crosslinking strategy used in conjunction with cell-laden GelMA/alginate hydrogel to achieve balanced physical and biological properties as well as less complicated post-bioprinting processing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850620PMC
http://dx.doi.org/10.1038/s41598-025-90389-2DOI Listing

Publication Analysis

Top Keywords

crosslinking alginate
16
ionic crosslinking
12
calcium chloride
12
mesenchymal stem
8
stem cells
8
alginate
8
physical biological
8
crosslinked calcium
8
crosslinking
5
bioprinting mesenchymal
4

Similar Publications

The inflammatory environment of periodontitis with bacteria, excessive reactive oxygen species (ROS) and limited regenerative capacity of alveolar bone makes reconstruction of periodontium become a huge challenge. The present strategies, such as local debridement and antibiotic injection, are difficult to solve above problems completely. Thus, to reverse the progression of the disease, Ca-tannic acid nanocomposites loaded into injectable sodium alginate/4-arm polyethylene glycol-lipoic acid hydrogel (CaTA@Gel) were fabricated, including Ca‑sodium alginate (SA) ionic crosslinking and radical polymerization of lipoic acid-modified 4-arm polyethylene glycol (PEG-SS) under UV illumination.

View Article and Find Full Text PDF

Pesticide-fertilizer synergistic alginate-based hydrogel for enhanced pesticide retention and nutrient optimization against apple Valsa canker.

Int J Biol Macromol

March 2025

Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Haidian District, Beijing 100193, PR China. Electronic address:

The prevalence of apple Valsa canker (AVC) poses a significant threat to the vitality of apple trees, jeopardizing the progress of the apple industry. Current strategies have proven inadequate in managing the disease effectively due to challenges such as extended duration and frequent relapses, especially low-adhesion vertical target. Herein, we introduce a pesticide-fertilizer synergistic alginate-based hydrogel (P&F-Gel) to enhance long-term pesticide retention and offer nutrient supplementation without labor-intensive practices.

View Article and Find Full Text PDF

Dual Cross-Linked Chitosan-Based Films with pH-Sensitive Coloration and Drug Release Kinetics for Smart Wound Dressings.

ACS Omega

March 2025

Polymer Synthesis and Functional Materials Research Unit, Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok 10520, Thailand.

In this study, we developed dual-cross-linked hydrogel films based on carboxyethyl chitosan (CECS) and sodium alginate (SA), utilizing dialdehyde β-cyclodextrin (DA-βCD) and gluconic acid δ-lactone (GDL) as cross-linkers. Designed as smart wound dressings, the films exhibit pH sensitivity due to the incorporation of carboxyethylated phenol red-grafted chitosan (CS-PR-AA), which allows them to change color from orange to purple in response to pH variations. FT-IR and TGA analyses confirmed the formation of imine bonds and polyelectrolyte complexes, indicating successful cross-linking.

View Article and Find Full Text PDF

Novel three-dimensional porous polyethyleneimine-functionalized graphene-sodium alginate-based aerogel for rapid extraction and sensitive detection of F-LCMs in human serum.

J Hazard Mater

March 2025

Hebei Key Laboratory of Public Health Safety, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Science, Hebei University, Baoding 071002, China. Electronic address:

Liquid crystal monomers (LCMs), as essential components of liquid crystal displays, have been identified as potentially hazardous to human health. However, research on highly sensitive methods for assessing internal exposure levels within populations remains limited. This gap in research hinders effective monitoring, early intervention, and the mitigation of health risks associated with LCMs exposure.

View Article and Find Full Text PDF

Reported nutrient passivators often target single-nutrient control and require complex, energy-intensive processes. In this study, we developed a mesoporous network-structured spherical La-based hydrogel for dual nitrogen and phosphorus control. The hydrogel framework, cross-linked by sodium alginate and lanthanum, encapsulates free La³⁺.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!