The preparation of metallic nanoparticles (NPs) using the green method is rapid, eco-friendly, and easily scaled up at room temperature and pressure. In the current study, zinc oxide nanoparticles (ZnO NPs) were prepared utilizing leaf extract from Mallotus philippinensis, employing two distinct precursors of zinc oxide: zinc acetate and zinc nitrate. The antioxidant and antibacterial properties of the synthesized nanoparticles were also evaluated. The synthesis of ZnO NPs was preliminary monitored by UV-visible analysis. The biosynthesized nanoparticles were further characterized using a variety of techniques, such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and ultraviolet-visible (UV-Vis) spectroscopy. XRD peaks showed that nanoparticles synthesized from both zinc precursors exhibit crystalline properties, having wurtzite hexagonal shapes. The TEM analysis indicates that the average crystallite size was determined to be 21 nm and 28 nm for zinc nitrate and zinc acetate as precursor. FTIR analysis confirmed the presence of polyphenolic compounds on the surface of the nanoparticles, which likely acted as reducing and capping agents during ZnO NP synthesis. The antioxidant activity of M. philippinensis-mediated ZnO NPs was assessed in vitro. ZnO NPs synthesized using zinc nitrate exhibited higher antioxidant potential (IC = 65.31 µg/ml) compared to those synthesized using zinc acetate (IC = 66.87 µg/ml). Furthermore, the ZnO NPs demonstrated significant antibacterial activity against both gram-positive and gram-negative bacteria, including Klebsiella pneumoniae (K. pneumoniae), Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Streptococcus pneumoniae (S. pneumoniae). The highest antibacterial activity was observed against S. pneumoniae, with a zone of inhibition of 14.97 ± 0.38 mm for ZnO NPs synthesized using zinc nitrate. These findings suggest that M. philippinensis leaf extract is an effective reducing and capping agent for the biosynthesis of ZnO NPs. The resulting nanoparticles exhibit potent antioxidant and antibacterial properties, highlighting their potential applications in biomedical and environmental fields.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850597PMC
http://dx.doi.org/10.1038/s41598-025-85264-zDOI Listing

Publication Analysis

Top Keywords

zno nps
28
synthesized zinc
20
zinc nitrate
16
antioxidant antibacterial
12
zinc oxide
12
leaf extract
12
zinc acetate
12
zinc
11
nanoparticles
8
oxide nanoparticles
8

Similar Publications

Effect of Various Nanofillers on Piezoelectric Nanogenerator Performance of P(VDF-TrFE) Nanocomposite Thin Film.

Nanomaterials (Basel)

March 2025

Department of Chemical and Biochemical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea.

Flexible polymer-based piezoelectric nanogenerators (PENGs) have gained significant interest due to their ability to deliver clean and sustainable energy for self-powered electronics and wearable devices. Recently, the incorporation of fillers into the ferroelectric polymer matrix has been used to improve the relatively low piezoelectric properties of polymer-based PENGs. In this study, we investigated the effect of various nanofillers such as titania (TiO), zinc oxide (ZnO), reduced graphene oxide (rGO), and lead zirconate titanate (PZT) on the PENG performance of the nanocomposite thin films containing the nanofillers in poly(vinylidene fluoride-co-trifluoro ethylene) (P(VDF-TrFE)) matrix.

View Article and Find Full Text PDF

The rise of multidrug-resistant (MDR) bacteria in food products poses a significant threat to public health, necessitating innovative and sustainable antimicrobial solutions. This study investigates the green synthesis of zinc oxide nanoparticles (ZnO-NPs) using extracts to evaluate their antibacterial and antibiofilm activities against MDR strains isolated from sold fish samples. The obtained results show that the contamination with reached 54.

View Article and Find Full Text PDF

Antibacterial Properties of Lemon Juice-Mediated Zinc Oxide Nanoparticle and Titanium Dioxide Nanoparticle.

J Pharm Bioallied Sci

December 2024

Department of Pharmacology, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, Tamil Nadu, India.

Introduction: The emergence of antibiotic-resistant pathogenic bacteria has become a major global health concern, with the increasing prevalence of infections that are difficult to treat with conventional antibiotics. As a result, there is a critical need for alternative antimicrobial agents that can effectively control bacterial infections and combat the growing problem of antibiotic resistance.

Materials And Methods: In this study, the antibacterial properties of lemon juice mediated zinc oxide nanoparticles (ZnO NPs) and titanium dioxide nanoparticles (TiO2 NPs) was evaluated against oral pathogens.

View Article and Find Full Text PDF

Zinc oxide nanoparticles promote migrasomes formation.

J Hazard Mater

February 2025

Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China; Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China. Electronic address:

The rising pollution from zinc oxide nanoparticles (ZnO-NPs) poses significant global concerns due to their widespread environmental presence and potential negative effects on human health. This study explores how ZnO-NPs impact migrasomes formation, a crucial process for cellular migration and communication. Our findings indicate that 28 nm ZnO-NPs enhance migrasomes formation, correlating with increased levels of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and GTP-RhoA-essential molecules in migrasomes biogenesis.

View Article and Find Full Text PDF

Beyond the von Neumann architecture, neuromorphic computing attracts considerable attention as an energy-efficient computing system for data-centric applications. Among various synapse device candidates, a memtransistor with a three-terminal structure has been considered to be a promising one for artificial synapse with controllable weight update characteristics and strong immunity to disturbance due to decoupled write and read electrode. In this study, oxygen ion exchange-based electrochemical random-access memory consisting of the ZnO channel and CeO nanoparticle (NP) assembly as a gate insulator, also as an ion exchange layer, is proposed and investigated as an artificial synapse device for neuromorphic computing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!