The site-specific recombination system is a versatile tool in genome engineering, enabling controlled DNA inversion or deletion at specific sites to generate genetic diversity. The multiplexed inversion system, which preferentially facilitates inversion at reverse-oriented sites rather than deletion at same-oriented sites, has not been found in eukaryotes. Here, we establish a multiplexed site-specific inversion system, Rci51-5/multi-sfxa101, in yeast. Firstly, we develop a high-throughput screening system based on the on/off transcriptional control of multiple markers by DNA inversion. After two rounds of progressively stringent directed evolution, a mutant Rci51-5 shows an ability of multisite inversion and a ~ 1000-fold increase in total inversion efficiency against the wild-type Rci derived from Salmonella typhimurium. Subsequently, we demonstrate that the Rci51-5/multi-sfxa101 system exhibits significantly lower deletion rate than the Cre/multi-loxP system. Using the synthetic metabolic pathway of β-carotene as an example, we illustrate that the system can effectively facilitate promoter substitution in the metabolic pathway, resulting in a more than 7-fold increase in the yield of β-carotene. In summary, we develop a multiplexed site-specific inversion system in eukaryotes, providing an approach to metabolic engineering and a tool for eukaryotic genome manipulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850598 | PMC |
http://dx.doi.org/10.1038/s41467-025-57206-w | DOI Listing |
Phys Chem Chem Phys
March 2025
Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, Pennsylvania 18015, USA.
Despite their wide use as molecular photoswitches, the mechanistic photophysics of azo dyes are complex and nuanced, and therefore under-explored. To understand the complex electronic interactions that govern the photoisomerization and thermal reversion of two phenyl-azo-indole dyes that differ by R-sterics near the azo bond, potential energy surfaces that combine the dihedral rotation of the azo bond and the aryl inversion on each side of the azo bond were calculated with density functional theory and time-dependent density functional theory. These multidimensional singlet surfaces provide insights into the correlated rotation and inversion pathways allowing for detailed understanding of both photoisomerization, governed by the excited-state surfaces, and thermal reversion, governed by the ground-state surface, mechanisms to be developed.
View Article and Find Full Text PDFPhys Chem Chem Phys
March 2025
Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
Two-dimensional ferromagnetic materials have a broader development prospect in the field of spintronics. In particular, the high spin polarization system with half-metallic characteristics can be used as an efficient spin injection electrode. first-principles calculations, we predict that monolayer MnF has Dirac half-metallic properties.
View Article and Find Full Text PDFGenome Biol
March 2025
Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China.
Chromosomal rearrangements, such as translocations, deletions, and inversions, underlie numerous genetic diseases and cancers, yet precise engineering of these rearrangements remains challenging. Here, we present a CRISPR-based homologous recombination-mediated rearrangement (HRMR) strategy that leverages homologous donor templates to align and repair broken chromosome ends. HRMR improves efficiency by approximately 80-fold compared to non-homologous end joining, achieving over 95% homologous recombination.
View Article and Find Full Text PDFCognition
March 2025
Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands.
As a social species, humans preferentially attend to the faces and bodies of other people. Previous research revealed specialized cognitive mechanisms for processing human faces and bodies. For example, upright person silhouettes are more readily found than inverted silhouettes in visual search tasks.
View Article and Find Full Text PDFUltrasonics
March 2025
State Key Laboratory for Manufacture Systems Engineering, Xi'an Jiaotong University, Xi'an, China; International Joint Laboratory for Micro/nano Manufacturing and Measurement Technology, Xi'an Jiaotong University, Xi'an, China. Electronic address:
Laser powder bed fusion (LPBF) is widely employed in metal additive manufacturing to fabricate components with outstanding mechanical properties and precise dimensions by melting powder layer-by-layer. As an in-line monitoring technique for additive manufacturing (AM), laser ultrasonic testing (LUT) is expected to be effective. During the LPBF process, ultrasonic signals are affected by thickness variations of specimens.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!