The sequestration of nanoparticles by mononuclear phagocyte system is a challenge for the use of nanotherapy for treating cardiovascular diseases due to the conventionally perceived loss of therapeutic potency. Here, we revitalize cardiovascular nanotherapy by unlocking an alternative route in which nanomedicines are redirected to the spleen, leveraging its potential as a highly efficient and targeted site for remote conditioning, or tele-conditioning myocardial reperfusion injury. The theoretical foundation underpinning is the splenogenic nature of recruited monocytes upon myocardial reperfusion in the acute stage, which is confirmed through murine heterotopic spleen transplantation. Single-cell RNA-seq analysis identifies IRF7 as a pivotal mediator in the spleen-heart communication network that is initially induced in the spleen and orchestrates functional changes in myocardial macrophages. Spleen-related induction of IRF7 is also valid in human myocardial reperfusion scenarios. In addition, in a murine preclinical model of male mice, temporal inhibition of splenic IRF7 through the designed spleen-targeting erythrosome engineered with the targeting peptide RP182, termed as STEER nanoparticles, mitigates the acute-stage innate immune responses and improves the cardiac function in the long term. In contrast, systemic inhibition, genetic knockout of IRF7 or absolute depletion of splenic monocytes does not have therapeutic benefits, indicating the superiority of nanoparticle-based targeted treatment. These findings establish the spleen as a naturally favored site for nanoparticle-based treatments, offering promising avenues for managing myocardial reperfusion injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850716PMC
http://dx.doi.org/10.1038/s41467-025-57048-6DOI Listing

Publication Analysis

Top Keywords

myocardial reperfusion
20
reperfusion injury
12
splenic irf7
8
tele-conditioning myocardial
8
myocardial
6
irf7
5
reperfusion
5
identification splenic
4
irf7 nanotherapy
4
nanotherapy target
4

Similar Publications

Effective transcatheter intracoronary delivery of mRNA-lipid nanoparticles targeting the heart.

J Control Release

March 2025

Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan; Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka, Japan. Electronic address:

Messenger RNA (mRNA) has great potential to provide innovative medical solutions in the treatment of heart failure. Although lipid nanoparticles (LNPs) are an established mRNA delivery system, effectively delivering LNPs to the heart remains a significant challenge. Here, we evaluated the efficacy of transcatheter intracoronary (IC) administration compared to intravenous (IV) and intramyocardial (IM) administration in normal and ischemia-reperfusion (I/R) model rabbit hearts using LNPs encapsulating Firefly Luciferase (FLuc) mRNA.

View Article and Find Full Text PDF

Although many cardioprotective interventions have been shown to limit infarct size (IS), in preclinical animal studies of acute myocardial ischemia/reperfusion injury (IRI), their clinical translation to patient benefit has been largely disappointing. A major factor is the lack of rigor and reproducibility in the preclinical studies. To address this, we have established the IMproving Preclinical Assessment of Cardioprotective Therapies (IMPACT) small animal multisite acute myocardial infarction (AMI) network, with centralized randomization and blinded core laboratory IS analysis, and have validated the network using ischemic preconditioning (IPC).

View Article and Find Full Text PDF

Acute myocardial infarction, a leading cause of death globally, is often associated with cardiometabolic disorders such as atherosclerosis and metabolic syndrome. Metabolic treatment of these disorders can improve cardiac outcomes, as exemplified by the GLP-1 agonist semaglutide. Fibroblast growth factor 21 (FGF21), a novel metabolic regulator, plays pivotal roles in lipid mobilization and energy conversion, reducing lipotoxicity, inflammation, mitochondrial health, and subsequent tissue damage in organs such as the liver, pancreas, and heart.

View Article and Find Full Text PDF

Background: Acute myocardial infarction (AMI) is the primary cause of cardiac mortality worldwide. However, myocardial ischemia-reperfusion injury (MIRI) following reperfusion therapy is common in AMI, causing myocardial damage and affecting the patient's prognosis. Presently, there are no effective treatments available for MIRI.

View Article and Find Full Text PDF

Purpose: Post-contrast mapping has proven promising for automated scar segmentation in subjects without ICDs, but this has not been implemented in patients with ICDs. We introduce an automated cluster-based thresholding method for maps with an ICD present and compare it to manually tuned thresholding of synthetic LGE images with an ICD present and standard LGE without an ICD present.

Methods: Seven swine received an ischemia-reperfusion myocardial infarction and were imaged at 3 T 4-5 weeks post-infarct with and without an ICD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!