This study provides a comprehensive examination of chitosan-based multifunctional nanocomposites and their extensive applications in drug/gene/protein delivery, tissue engineering and cancer therapy. As a natural polymer with eco-friendly characteristics and both antimicrobial and anti-cancer properties, chitosan has garnered attention in numerous medical and pharmaceutical domains. The research explores diverse chitosan nanocomposites, including those incorporating magnetic nanoparticles, carbon nanotubes, and clay- and alginate-based nanocomposites. Additionally, the study addresses the obstacles encountered in developing these materials and their potential for creating advanced drug delivery systems and targeted treatments. The study highlights the applications of these nanocomposites in bone, cartilage, and skin tissue regeneration, as well as their potential in neural tissue engineering. in conclusion, the research underscores the promising future of chitosan-based nanocomposites in revolutionizing drug delivery, tissue engineering, and cancer therapy. It emphasizes the need for further studies to fully harness the potential of these materials and translate laboratory findings into clinical applications, paving the way for more effective and personalized medical treatments. Our reason for writing this article appears to be a comprehensive exploration of the potential and challenges of chitosan-based multifunctional nanocomposites in medicine, particularly in drug/gene/protein delivery and cancer therapy. The aim is to provide a detailed analysis of the material's versatility, its integration with advanced nanotechnologies, and its applications in targeted treatments, and regenerative medicine. we seek to address existing challenges, such as safety, scalability, and regulatory compliance, while highlighting the promising future of these materials in personalized and efficient medical treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.141394DOI Listing

Publication Analysis

Top Keywords

chitosan-based multifunctional
12
multifunctional nanocomposites
12
drug/gene/protein delivery
12
tissue engineering
12
cancer therapy
12
delivery tissue
8
engineering cancer
8
drug delivery
8
targeted treatments
8
promising future
8

Similar Publications

Prolonged exposure to ultraviolet (UV) radiation can cause erythema, sunburn, inflammation, and even skin cancer. Sunscreen is highly effective in protecting against UV radiation. Hydrogels, due to their similarity to the skin's extracellular matrix, flexibility, and high water content, have been widely used for sunscreen applications.

View Article and Find Full Text PDF

Concurrently achieving lightweight, multifunctionality, excellent environmental adaptability, and broadband microwave absorption represents the inevitable trend in the development of microwave absorbing materials. Herein, an ultralight, elastic, multifunctional chitosan-based aerogel enhanced by carbon nanotubes (CNTs) and carbon fibers (CF) at micro-/macroscale is reported, and its super-efficiency microwave absorption is realized by the electromagnetic metastructure absorbers (EMAs) design. The resulting CF-C/C aerogel demonstrates ultra-low shrinkage (6.

View Article and Find Full Text PDF

Ultrafast self-gelling, superabsorbent, and adhesive chitosan-based hemostatic powders for rapid hemostasis and wound healing.

Carbohydr Polym

May 2025

Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315300, PR China. Electronic address:

Hemostatic powders are widely used for managing bleeding from wounds with various irregular shapes. However, their limited liquid absorption capacity and difficulty in removal after application remain significant clinical challenges. Herein, we introduce a multifunctional hemostatic powder composed of dually crosslinked poly([2-(methacryloyloxy)ethyl]trimethylammonium chloride-co-acrylic acid) (pMATC-co-AA) and N-[(2-hydroxy-3-trimethylammonium)propyl] chitosan chloride (HTCC), which are integrated via electrostatic interactions and hydrogen bonding.

View Article and Find Full Text PDF

Quaternized chitosan-based photothermal antibacterial hydrogel with pro-vascularization and on-demand degradation properties for enhanced infected wound healing.

Carbohydr Polym

May 2025

Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 11004, PR China. Electronic address:

Compromised skin barrier fails to prevent pathogenic bacterial invasion, leading to wound infection and potentially severe tissue damage, for which conventional wound dressings provide inadequate therapeutic outcomes. Herein, we have developed a multifunctional injectable hydrogel (QCS-APA/P@D@C) based on quaternized chitosan (QCS) and aldehyde-modified aliphatic polycarbonate (APA), incorporating Prussian Blue (PB) @Polydopamine (PDA) @Cu (P@D@C) submicron particles (SPs). This novel hydrogel exhibits photothermal antibacterial properties, on-demand removal capability, and Cu-facilitated wound healing enhancement.

View Article and Find Full Text PDF

Psoriasis is a chronic inflammatory skin disorder characterized by keratinocyte hyperproliferation, oxidative stress, and immune dysregulation. In this study, we developed a multifunctional, double-network hydrogel, composed of chitosan and poly(acrylic acid), embedded with cerium oxide nanoparticles (CeNPs) and betamethasone. The hydrogel harnesses the redox-catalytic properties of CeNPs to scavenge reactive oxygen species (ROS) while ensuring sustained betamethasone release for antibacterial and anti-inflammatory effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!