Electroacupuncture restores maternal separation-induced glutamatergic presynaptic deficits of the medial prefrontal cortex in adulthood.

Neuroscience

Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China.. Electronic address:

Published: March 2025

Maternal separation (MS) serves as a critical model of early life stress (ELS) that can lead to mood disorders, such as depression. Our previous studies suggest that MS may disrupt synaptic transmission in adulthood. While electroacupuncture (EA) has demonstrated antidepressant effects in several animal models of stress-induced depression, it remains unclear whether EA can reverse synaptic transmission deficits caused by ELS. In this study, we examined the effects of EA at Baihui (GV20) and Yintang (GV29) on both behavioural deficits and glutamatergic synaptic transmission in Sprague-Dawley rats subjected to MS. First, we showed that EA effectively alleviated anhedonia and despair-like behaviours. Furthermore, our data indicated that EA restored the decrease in presynaptic glutamate release, as evidenced by changes in the frequency of miniature excitatory postsynaptic currents (mEPSCs) and paired-pulse ratios (PPR). Microdialysis results also suggested that EA elevated extracellular glutamate levels. To explore the underlying mechanisms, we performed Western blot analyses on several proteins involved in glutamatergic synaptic transmission. Notably, we found that EA treatment increased the expression of vesicular glutamate transporters (VGLUT1 and VGLUT2) and vesicle-associated release proteins (SNAP25, Syntaxin-1A, and VAMP2) in the medial prefrontal cortex (mPFC) of MS rats. In contrast, EA did not significantly affect most postsynaptic glutamatergic receptors. These findings underscore the significant impact of EA on glutamatergic synaptic transmission, particularly in restoring presynaptic impairments induced by MS in adulthood.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2025.02.049DOI Listing

Publication Analysis

Top Keywords

synaptic transmission
20
glutamatergic synaptic
12
medial prefrontal
8
prefrontal cortex
8
glutamatergic
5
synaptic
5
transmission
5
electroacupuncture restores
4
restores maternal
4
maternal separation-induced
4

Similar Publications

The release of synaptic vesicles (SVs) at the synaptic junction is a complex process involving various specialized proteins that work in unison. Among these, Bassoon has emerged as a significant protein, particularly noted for its association with various neurological and aging-related diseases. Due to its structural and functional roles, Bassoon has become a focus of recent research, especially in understanding its implications in neurodegenerative and psychiatric disorders.

View Article and Find Full Text PDF

Terahertz (THz) waves, a novel type of radiation with quantum and electronic properties, have attracted increasing attention for their effects on the nervous system. Spatial working memory, a critical component of higher cognitive function, is coordinated by brain regions such as the infralimbic cortex (IL) region of the medial prefrontal cortex and the ventral cornu ammonis 1 (vCA1) of hippocampus. However, the regulatory effects of THz waves on spatial working memory and the underlying mechanisms remain unclear.

View Article and Find Full Text PDF

The impact of general anesthetics on neurodevelopment is highly controversial in terms of clinical and preclinical studies. Evidence mounted in recent years indicated development of social cognitions was more susceptible to general anesthesia in early life. However, the behavioral characterization during adolescence and underlying mechanisms remains unclear.

View Article and Find Full Text PDF

Astrocytes as Key Regulators of Neural Signaling in Health and Disease.

Annu Rev Neurosci

March 2025

Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, South Korea; email:

Astrocytes, traditionally viewed as supportive cells within the central nervous system (CNS), are now recognized as dynamic regulators of neural signaling and homeostasis. They actively engage in synaptic transmission and brain health by releasing gliotransmitters such as glutamate, GABA, ATP, adenosine, lactate, and d-serine. Astrocytes also play a critical role in ion homeostasis and immune response through cytokine modulation and reactive oxygen species regulation.

View Article and Find Full Text PDF

Whole-cell patch clamp allows the evaluation of neuronal excitability and characterization of synaptic transmission. With this technique, it is possible to characterize the neuron maturation level and its integration into the hippocampal circuit. This facilitates the identification of the different stages of neural progenitor cells in the adult brain and their contribution to hippocampal function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!