Nanobody-based drug delivery systems for cancer therapy.

J Control Release

School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China. Electronic address:

Published: February 2025

Targeted delivery can elevate the local drug concentration within tumor tissues, while minimizing drug distribution to normal tissues, thus enhancing the effectiveness of anti-tumor medications and reducing adverse effects and systemic toxicities. Nanobodies, the novel molecular pattern of antibodies characterized by their small size, high stability, strong specificity, and low immunogenicity, have been extensively applied in targeted drug delivery for tumor therapy. This review discusses structural disparities and functional advantages of nanobodies compared to other antibody fragments and full-length antibody. It also highlights nanobody applications in targeted tumor therapy, focusing on their use in modifying delivery systems, e.g., liposomes, EVs, micelles, albumin nanoparticles, gold nanoparticles, polymeric nanoparticles, and as nanobody-drug conjugates. This review delves into the methods applied for integrating nanobodies into different drug delivery carriers, in order to provide useful information for researchers developing nanobody-based targeted drug delivery systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2025.02.058DOI Listing

Publication Analysis

Top Keywords

drug delivery
16
delivery systems
12
targeted drug
8
tumor therapy
8
delivery
6
drug
5
nanobody-based drug
4
systems cancer
4
cancer therapy
4
targeted
4

Similar Publications

Pain management in pregnant and postpartum people with an opioid use disorder requires a balance among the risks associated with opioid tolerance, including withdrawal or return to opioid use, considerations around the social needs of the maternal-infant dyad, and the provision of adequate pain relief for the birth episode that is often characterized as the worst pain a person will experience in their lifetime. This multidisciplinary consensus statement from the Society for Obstetric Anesthesia and Perinatology, the Society for Maternal-Fetal Medicine, and the American Society of Regional Anesthesia and Pain Medicine provides a framework for pain management in obstetrical patients with opioid use disorder. The purpose of this consensus statement is to provide practical and evidence-based recommendations and is targeted to healthcare providers in obstetrics and anesthesiology.

View Article and Find Full Text PDF

Role of exosomes in regulating ferroptosis of tumor cells.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

October 2024

Medical Research Experimental Center, Shaanxi University of Chinese Medicine, Xianyang Shaanxi 712046, China.

Exosomes are nanoscale extracellular vesicles widely present in various body fluids. They carry a variety of substances, including proteins, lipids, and nucleic acids, and play significant roles in the body by participating in immune regulation, intercellular signal transduction, and the transport of proteins and nucleic acids. Exosomes can regulate tumor development and drug resistance by modulating ferroptosis.

View Article and Find Full Text PDF

In vitro study of a siRNA delivery liposome constructed with an ionizable cationic lipid.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

October 2024

Department of Pharmaceutical Engineering, Chemistry and Chemical Engineering, Central South University, Changsha 410083.

Objectives: Small interfering RNA (siRNA) can silence disease-related genes through sequence-specific RNA interference (RNAi). Cationic lipid-based liposomes effectively deliver nucleic acids into the cytoplasm but often exhibit significant toxicity. This study aims to synthesize a novel ionizable lipid, Nε-laruoyl-lysine amide (LKA), from natural amino acids, constructed LKA-based liposomes, and perform physicochemical characterization and cell-based experiments to systematically evaluate the potential of these ionizable lipid-based liposomes for nucleic acid delivery.

View Article and Find Full Text PDF

Mechanisms for absorption improvement of drugs with low water-solubility by self-microemulsifying drug delivery system (SMEDDS) are still controversial except for solubility improvement. We attempted to clarify the mechanisms by utilizing model drugs classified as biopharmaceutics classification system class II. In the in-vitro transport study for microemulsions (MEs) formed from SMEDDS, the permeation clearance (CL) calculated based on free drug concentrations in MEs, was significantly larger than the CL for aqueous solution.

View Article and Find Full Text PDF

Traditional mRNA vaccine formulation loaded by lipid nanoparticle (mRNA-LNP) has several shortcomings in clinical application, including the need for cryopreservation, discomfort associated with intramuscular injections, and the risk of liver aggregation. Dissolvable microneedles (DMNs), as a novel transdermal drug delivery platform, can overcome the skin barrier to deliver drugs directly into the skin in a minimally invasive manner. However, mRNA-LNP is unstable and easily degraded during the solidification of DMN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!