The tropical genus Cryptocarya is known for its valuable timber and its constituents show potential for medicinal properties. However, the phylogenetic relationships among species in Asia remain unclear. Here, we report the first mitochondrial genome assembly for Cryptocarya kwangtungensis, consisting of 758,020 bp, including 43 protein-coding genes, 23 tRNA genes and three rRNA genes, with 234 simple sequence repeats, and 1346 dispersed repeats, 35 homologous DNA fragments between the mitogenome and the plastome. Comparative genomic analysis indicated frequent recombination events among the sequences of five magnoliids mitogenomes and only five conserved clustered genes. Further phylogenetic analyses based on 91 mitochondrial regions and nuclear ribosomal cistron sequences of 21 species compound three well-resolved congruent groups for the Cryptocarya species in Asia, both of which support the genus divide into three clades, suggesting that the mitogenome sequence can provide strongly supported relationships within the genus in the family Lauraceae.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ygeno.2025.111018 | DOI Listing |
Acta Physiol (Oxf)
April 2025
Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey.
Aim: Mitochondria play key roles in neuronal activity, particularly in modulating agouti-related protein (AgRP) and proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC), which regulates food intake. FAM163A, a newly identified protein, is suggested to be part of the mitochondrial proteome, though its functions remain largely unknown. This study aimed to investigate the effects of Fam163a knockdown and mitochondrial dysfunction on food intake, AgRP neuron activity, and mitochondrial function in the hypothalamus.
View Article and Find Full Text PDFMitochondrial DNA B Resour
March 2025
Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China.
(Caudata, Hynobiidae) is a recently described species, identified in 2022, and is thus not widely known. In this study, we sequenced and annotated the complete mitogenome of . The resulting mitochondrial genome is 16,406 bp in length and comprises 13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNA), 22 transfer RNA genes, and a non-coding region.
View Article and Find Full Text PDFWellcome Open Res
February 2025
British Antarctic Survey, NERC, Cambridge, England, UK.
We present a genome assembly from an individual female (the Antarctic lanternfish; Chordata; Actinopterigii; Myctophiformes; Myctophidae). The genome sequence has a total length of 1,427.40 megabases.
View Article and Find Full Text PDFFEBS J
March 2025
Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Irapuato, Mexico.
Reactive oxygen species (ROS) generate DNA lesions that alter genome integrity. Among those DNA lesions, 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodG) is particularly mutagenic. 8-oxodG efficiently incorporates deoxycytidine monophosphate (dCMP) and deoxyadenosine monophosphate (dAMP) via base pairing mediated by its anti and syn conformations, respectively.
View Article and Find Full Text PDFBMC Genomics
March 2025
DPIRD Marine Fish, Aquaculture Research and Development, Fremantle, WA, Australia.
Background: Changing ocean temperatures are already causing declines in populations of marine organisms. Predicting the capacity of organisms to adjust to the pressures posed by climate change is a topic of much current research effort, particularly for species we farm or harvest. To explore one measure of phenotypic plasticity, the physiological compensations in response to heat stress as might be experienced in a marine heatwave, we exposed Yellowtail Kingfish (Seriola lalandi) to sublethal heat stress, and used the transcriptome in gill and muscle, benchmarked against heat shock proteins and oxidative stress indicators, to characterise the acute heat stress response (6 h after the initiation of stress), and the physiological compensation to that response (24 and 72 h after the initiation of stress).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!