Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Transcranial Direct Current Stimulation (tDCS) and Transcranial Magnetic Stimulation (tMS) have received widespread clinical use as techniques within a Non-Invasive Brain Stimulation (NIBS) domain, whose primary focus is modulation of neural activity to treat neurological and psychiatric disorders. Despite these advancements, precision targeting of deep brain structures remains a challenge faced with great need of another innovation that will improve precision and reduce the risks. A novel methodology integrating transcranial Focused Ultrasound (tFUS) with real-time functional imaging modalities, including functional Magnetic Resonance Imaging (fMRI) and Near-Infra-Red Spectroscopy (NIRS), is proposed in this study as the Integrated Focused Ultrasound and Real-Time Imaging Control System (IFURTICS).
Principle Results: Closed loop algorithms employed by IFURTICS allow it to dynamically vary stimulation parameters in response to real-time feedback on neural activity, allowing for accurate targeting of sensitive networks while minimizing deleterious collateral effects.
Conclusions: Clinical trials using standard datasets of fMRI and NIRS have proved that the approach improved targeting accuracy by ∼18 %, reduced off-target effects by ∼55 % and enhanced therapeutic outcomes by 50 % over current methods, suggesting its potential as a transformative approach to precision neuro-modulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneumeth.2025.110391 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!