Background: Measuring heart rate variability (HRV) through wearable photoplethysmography sensors from smartwatches is gaining popularity for monitoring many health conditions. However, missing data caused by insufficient wear compliance or signal quality can degrade the performance of health metrics or algorithm calculations. Research is needed on how to best account for missing data and to assess the accuracy of metrics derived from photoplethysmography sensors.

Objective: This study aimed to evaluate the influence of missing data on HRV metrics collected from smartwatches both at rest and during activity in real-world settings and to evaluate HRV agreement and consistency between wearable photoplethysmography and gold-standard wearable electrocardiogram (ECG) sensors in real-world settings.

Methods: Healthy participants were outfitted with a smartwatch with a photoplethysmography sensor that collected high-resolution interbeat interval (IBI) data to wear continuously (day and night) for up to 6 months. New datasets were created with various amounts of missing data and then compared with the original (reference) datasets. 5-minute windows of each HRV metric (median IBI, SD of IBI values [STDRR], root-mean-square of the difference in successive IBI values [RMSDRR], low-frequency [LF] power, high-frequency [HF] power, and the ratio of LF to HF power [LF/HF]) were compared between the reference and the missing datasets (10%, 20%, 35%, and 60% missing data). HRV metrics calculated from the photoplethysmography sensor were compared with HRV metrics calculated from a chest-worn ECG sensor.

Results: At rest, median IBI remained stable until at least 60% of data degradation (P=.24), STDRR remained stable until at least 35% of data degradation (P=.02), and RMSDRR remained stable until at least 35% data degradation (P=.001). During the activity, STDRR remained stable until 20% data degradation (P=.02) while median IBI (P=.01) and RMSDRR P<.001) were unstable at 10% data degradation. LF (rest: P<.001; activity: P<.001), HF (rest: P<.001, activity: P<.001), and LF/HF (rest: P<.001, activity: P<.001) were unstable at 10% data degradation during rest and activity. Median IBI values calculated from photoplethysmography sensors had a moderate agreement (intraclass correlation coefficient [ICC]=0.585) and consistency (ICC=0.589) and LF had moderate consistency (ICC=0.545) with ECG sensors. Other HRV metrics demonstrated poor agreement (ICC=0.071-0.472).

Conclusions: This study describes a methodology for the extraction of HRV metrics from photoplethysmography sensor data that resulted in stable and valid metrics while using the least amount of available data. While smartwatches containing photoplethysmography sensors are valuable for remote monitoring of patients, future work is needed to identify best practices for using these sensors to evaluate HRV in medical settings.

Download full-text PDF

Source
http://dx.doi.org/10.2196/53645DOI Listing

Publication Analysis

Top Keywords

missing data
24
remained stable
16
data degradation
16
hrv metrics
12
median ibi
12
data
11
heart rate
8
rate variability
8
wearable photoplethysmography
8
data hrv
8

Similar Publications

Longitudinal neuroimaging studies offer valuable insight into brain development, ageing, and disease progression over time. However, prevailing analytical approaches rooted in our understanding of population variation are primarily tailored for cross-sectional studies. To fully leverage the potential of longitudinal neuroimaging, we need methodologies that account for the complex interplay between population variation and individual dynamics.

View Article and Find Full Text PDF

Many current image restoration approaches utilize neural networks to acquire robust image-level priors from extensive datasets, aiming to reconstruct missing details. Nevertheless, these methods often falter with images that exhibit significant information gaps. While incorporating external priors or leveraging reference images can provide supplemental information, these strategies are limited in their practical scope.

View Article and Find Full Text PDF

Based on data from a randomized, controlled vaccine efficacy trial, this article develops statistical methods for assessing vaccine efficacy (VE) to prevent COVID-19 infections by a discrete set of genetic strains of SARS-CoV-2. Strain-specific VE adjusting for possibly time-varying covariates is estimated using augmented inverse probability weighting to address missing viral genotypes under a competing risks model that allows separate baseline hazards for different risk groups. Hypothesis tests are developed to assess whether the vaccine provides at least a specified level of VE against some viral genotypes and whether VE varies across genotypes.

View Article and Find Full Text PDF

Background: Several hematological and biochemical parameters have been related to the COVID-19 infection severity and outcomes. However, less is known about clinical indicators reflecting lung involvement of COVID-19 patients at hospital admission. Computed tomography (CT) represents an established imaging tool for the detection of lung injury, and the quantitative analysis software CALIPER has been used to assess lung involvement in COVID-19 patients.

View Article and Find Full Text PDF

In 2020, the coronavirus disease 2019 (COVID-19) pandemic altered lifestyles dramatically. We previously reported that the physical function of walk-in rehabilitation users in Japan worsened after the state of emergency declaration and continued to worsen until the end of 2020. However, whether physical function continued to worsen during the prolonged pandemic period remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!